
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010 229

A Multiagent Evolutionary Algorithm for
Combinatorial Optimization Problems

Jing Liu, Member, IEEE, Weicai Zhong, Member, IEEE, and Licheng Jiao, Senior Member, IEEE

Abstract—Based on our previous works, multiagent systems and
evolutionary algorithms (EAs) are integrated to form a new algo-
rithm for combinatorial optimization problems (CmOPs), namely,
MultiAgent EA for CmOPs (MAEA-CmOPs). In MAEA-CmOPs,
all agents live in a latticelike environment, with each agent fixed
on a lattice point. To increase energies, all agents compete with
their neighbors, and they can also increase their own energies
by making use of domain knowledge. Theoretical analyses show
that MAEA-CmOPs converge to global optimum solutions. Since
deceptive problems are the most difficult CmOPs for EAs, in
the experiments, various deceptive problems with strong link-
age, weak linkage, and overlapping linkage, and more difficult
ones, namely, hierarchical problems with treelike structures, are
used to validate the performance of MAEA-CmOPs. The results
show that MAEA-CmOP outperforms the other algorithms and
has a fast convergence rate. MAEA-CmOP is also used to solve
large-scale deceptive and hierarchical problems with thousands of
dimensions, and the experimental results show that MAEA-CmOP
obtains a good performance and has a low computational cost,
which the time complexity increases in a polynomial basis with the
problem size.

Index Terms—Combinatorial optimization problems (CmOPs),
deceptive problems, evolutionary algorithms (EAs), hierarchical
problems, multiagent systems.

NOTATION LIST

S Search space.
E Set of all the different energy values.
Ei ith element of E.
Si Set of elements in S whose energy is equal

to Ei.
x, a, and c Binary vectors in S.
x∗ Best binary vector in S.
L Agent lattice.
Li,j Agent located at the ith row and jth column

of L.
Lt Agent lattice in the tth generation.
L Set of all agent lattices.
Li Set of agent lattices whose energy is equal

to Ei.
Lij jth agent lattice in Li.

Manuscript received October 21, 2008; revised February 15, 2009. First
published July 28, 2009; current version published October 30, 2009. This
work was supported by the National Natural Science Foundation of China under
Grant 60872135 and by the Program for New Century Excellent Talents of the
University of China under Grant NCET-06-0857. This paper was recommended
by Associate Editor H. Takagi.

The authors are with the Institute of Intelligent Information Processing,
Xidian University, Xi’an 710071, China (e-mail: neouma@163.com;
wakenov@gmail.com; lchjiao@mail.xidian.edu.cn).

Digital Object Identifier 10.1109/TSMCB.2009.2025775

N i,j Set of neighbors of Li,j .
T Main learning table.
T q qth sublearning table.
n Dimension of S.
ai, ci, and li ith components of a, c, and Li,j , respectively.
Lsize Size of the agent lattice.
r Perception range.
Ti,j Positive integer located at the ith row and the

jth column in T .
T q

i,j Positive integer located at the ith row and the
jth column in T q.

s Number of sublearning tables.
pij.kl Probability of transition from Lij to Lkl.
pij.k Probability of transition from Lij to any agent

lattice in Lk.
pi.k Probability of transition from any agent lattice

in Li to any agent lattice in Lk.
f(x) Objective function.
u Number of variables whose value is 1 in f(x).
fmapping Mapping function in hierarchical problems.
U(0, 1) Uniform random real number in [0, 1].
Energy(•) Energy of an agent.
Learning(•) Flag to determine which strategy is used in the

self-learning behavior.
| • | Cardinality of a set.
Pr{•} Probability of the event in “{}.”

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) [1]–[6] are stochastic
global optimization methods inspired by the biological

mechanisms of evolution and heredity. In recent years, with
the characteristics of easier application, greater robustness, and
better parallel processing than most classical optimizing meth-
ods, EAs have been widely used for numerical optimization,
combinatorial optimization, classification, and many other en-
gineering problems [7]–[13]. But it is realized from practice
that EAs still have weakness, and it is worth stepping back and
exploring how to best learn from nature and how to incorporate
our existing knowledge in artificial intelligence into EAs.

Agent-based computation has been studied for several years
in the field of distributed artificial intelligence [14], [15] and has
been widely used in other branches of computer science [7],
[8], [16]–[18]. Multiagent systems are computational systems
in which several agents interact or work together to achieve
some purposes. Problem solving is an area with which many
multiagent-based applications are concerned. It includes dis-
tributed solutions to problems, solving distributed problems,

1083-4419/$26.00 © 2009 IEEE

230 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

and distributed techniques for problem solving [14], [15]. Many
researches have been done in this field. Liu et al. [17] in-
troduced an application of distributed techniques for solving
constraint satisfaction problems (CSPs). They solved 7000-
queen problems by an energy-based multiagent model.

On the other hand, there are two related previous works we
have done. First, multiagent systems and genetic algorithms
(GAs) are integrated to solve global numerical optimization
problems in [7], and the proposed method can find high-quality
solutions at a low computational cost even for functions with
10 000 dimensions. Second, multiagent systems and EAs are
combined to form a new algorithm for solving CSPs in [8],
and the comparison results show that the proposed method out-
performs several famous existing algorithms. All these results
show that both agents and EAs have high potentials in solving
complex and ill-defined problems.

Following our pervious works, multiagent systems and EAs
are integrated to solve combinatorial optimization problems
(CmOPs) in this paper. CmOPs are one of the most basic
and important research and application fields. Usually, they
are nondifferentiable, discontinuous, multidimensional, con-
strained, and highly nonlinear NP-hard problems and have lots
of local optima. With the intrinsic properties of CmOPs in
mind, we design two agent behaviors, that is, the competition
behavior and the self-learning behavior, to realize the purpose
of minimizing the objective function values. Based on this, a
new algorithm, namely, MultiAgent EA for CmOPs (MAEA-
CmOPs), is proposed. Theoretical analyses show that MAEA-
CmOPs converge to global optimum solutions.

In the experiments, since deceptive problems are the most
difficult CmOPs for EAs, deceptive problems with various
linkages and more difficult ones, namely, hierarchical problems
with treelike structures, are used to validate the performance of
MAEA-CmOPs. The slow convergence rate is one of the key
reasons that prevent EAs from practical applications. However,
the experimental results show that MAEA-CmOP has a fast
convergence rate and obtains a good performance even for
various deceptive and hierarchical problems with thousands of
dimensions. These results demonstrate that MAEA-CmOP is a
competent algorithm for practical applications.

Compared with our previous works [7], [8], the common
point between MAEA-CmOPs and the works in [7] and [8] is
that they all follow the idea of integrating multiagent systems
into EAs. However, since they cope with different problems, the
meaning of agents is different, so the designed agent behaviors
are completely different. Agent behaviors are the core of each
algorithm, which decides that the three algorithms are totally
different in both implementation and application fields. Apart
from this, the experiments in each work are performed on the
famous benchmark problems in each field.

Since MAEA-CmOP uses a lattice-based population, it is
similar to cellular GAs (CGAs) [19]–[22] to some extent.
However, all operations of CGAs are the same with those
of traditional GAs except that CGAs have a neighborhood
structure. In essence, CGAs are greedy techniques for enabling
a fine-grained parallel implementation of GAs and can present
the same problem of premature convergence of traditional
GAs [22]. However, MAEA-CmOP makes use of the ability

of agents in sensing and acting on the environment and puts
emphasis on designing behaviors for agents. The experimental
results show that MAEA-CmOP achieves a good performance
even for deceptive and hierarchical problems with thousands of
dimensions, which demonstrate that MAEA-CmOP overcomes
the problem of premature convergence to some extent.

The rest of this paper is organized as follows: Section II
describes the agents for CmOPs. Section III describes the im-
plementation of MAEA-CmOPs and analyzes its convergence.
Sections IV and V present experimental studies on the various
deceptive and hierarchical problems, respectively. Finally,
Section VI concludes the works in this paper.

II. AGENTS FOR CMOPS

According to [15] and [17], an agent is a physical or virtual
entity that essentially has the following properties: 1) it is able
to live and act in an environment; 2) it is able to sense its local
environment; 3) it is driven by certain purposes; and 4) it has
some reactive behaviors. In general, four elements should be
defined when multiagent systems are used to solve problems.
The first is the meaning and purpose of each agent. The second
is the environment where all agents live. Since each agent has
only local perception, the third is the definition of the local
environment. The last is the behavior that each agent can take
to achieve its purposes. In what follows, these elements for
CmOPs are defined.

A. Definition of Agents

The objective of CmOPs is to optimize some functions to
satisfy the given constraints over a discrete and finite math-
ematical structure. It can be described as follows: Given a
problem (S, f), where S is the search space, and f is the ob-
jective function, the objective is to find x∗ ∈ S, which satisfies
f(x∗) ≥ f(x) for ∀x ∈ S. Since the search space is discrete,
each element in it can be encoded by a binary string. Based on
this, an agent is defined as follows.

Definition 1: An agent, labeled as a, represents a candidate
solution for the CmOP under consideration and is encoded by a
binary vector

a = (a1, a2, . . . , an) ∈ S, ai = 0 or 1; 1 ≤ i ≤ n (1)

where n is the problem size. The energy of a is equal to
its associated objective function value, namely, Energy(a) =
f(a). The purpose of a is to increase its energy as much as
possible.

All agents live in a toroidal latticelike environment, which
is called as agent lattice and labeled as L. The size of L is
Lsize × Lsize, where Lsize is a positive integer. Each agent is
fixed on a lattice point and can only interact with its neighbors.
Therefore, the agent lattice can be represented as the form in
Fig. 1. Supposing that the agent located at (i, j) is represented
as Li,j , i, j = 1, 2, . . . , Lsize, then the set of neighbors of
Li,j , labeled as N i,j , is determined by a parameter, namely,
perception range (r), as

Ni,j = Lk,l

LIU et al.: MULTIAGENT EVOLUTIONARY ALGORITHM FOR COMBINATORIAL OPTIMIZATION PROBLEMS 231

Fig. 1. Model of the agent lattice, where each cell denotes an agent, and the
numbers in it are the row and column positions.

where⎧⎪⎪⎨
⎪⎪⎩

(i − r) ≤ k ≤ (i + r) and k =
{

k + Lsize, k < 1
k − Lsize, k > Lsize

(j − r) ≤ l ≤ (j + r) and l =
{

l + Lsize, l < 1
l − Lsize, l > Lsize

.

(2)

B. Behaviors of Agents

For CmOPs, the purpose of an algorithm is to find out the
best solutions incurring a computational cost as low as possible.
Thus, the computational cost can be considered as the resources
of the environment in which all agents live. Each agent will
compete with others to gain more resources. At the same time,
each agent can also increase its energy by using its knowledge.
Based on this, two agent behaviors, namely, the competition
behavior and the self-learning behavior, are designed. Since all
agents live in a lattice environment, each agent can only interact
with its neighbors. To let each behavior be more flexible, the
parameter perception range is used to adjust the neighbors in
each behavior.

1) Competition Behavior: The perception range in this be-
havior is fixed to 1. Thus, each agent has eight neighbors. For
Li,j , its energy is compared with their neighbors’ energies. If
Li,j’s energy is the maximum, then Li,j can survive; other-
wise, Li,j’s lattice point will be occupied by the child of the
agent whose energy is the maximum in N i,j . The details are
described as follows.

Suppose this behavior is performed by the agent located at
(i, j). Let Li,j = (l1, l2, . . . , ln) and amax = (a1, a2, . . . , an)
be the agents with the maximum energy in N i,j . If
Energy(Li,j) < Energy(amax), then a child agent c =
(c1, c2, . . . , cn) is generated from amax to replace Li,j . There
are two strategies to generate c:

Strategy 1:

ci =
{

ai, U(0, 1) < 0.5
li, otherwise

, 1 ≤ i ≤ n (3)

where U(0, 1) is a uniform random real number in [0, 1].

Strategy 2:

ci =
{

ai, U(0, 1) > 1/n
1 − ai, otherwise

, 1 ≤ i ≤ n. (4)

Strategy 1 generates a child agent c by making use of both
information in Li,j and amax, whereas Strategy 2 is a kind of
bit mutation that is commonly used in EAs. Since both Li,j

and amax are binary vectors, their differences can be measured
by the Hamming distance. Clearly, the smaller the Hamming
distance between Li,j and amax, the more similar these two
agents are, and then the lower the probability of generating
a better agent with Strategy 1. Thus, we use the following
rule to determine which strategy is selected: If the ratio of
the Hamming distance between Li,j and amax to n is larger
than 0.5, then Strategy 1 is selected; otherwise, Strategy 2 is
selected.

2) Self-Learning Behavior: The purpose of this behavior
is to increase the energy of an agent as much as possible.
However, the resources in the environment are limited. As a
result, an agent can obtain a self-learning opportunity only
when its energy is larger than those of their neighbors. First,
a learning table is defined as follows.

Definition 2: A Learning Table, labeled as (T)p×2, is a
matrix with p rows and two columns. Let Ti,j be the positive
integer located at the ith row and the jth column. Then, a
learning table must satisfy the following conditions:

(1 ≤ Ti,j ≤ n) and (Ti,1 ≤ Ti,2),

1 ≤ i ≤ p; j = 1 or 2 (5)

∀ i �= j, (Ti,1 �= Tj,1) or (Ti,2 �= Tj,2) (6)

p ≤ n(n + 1)
2

(7)

where (T)(n(n+1)/2)×2 is the main learning table, and any set
of rows of (T)(n(n+1)/2)×2 is a sublearning table.

The memory needed to store the main learning table is
determined by n. In what follows, we consider the case with
n < 216. If we use 2 B to store each data. and there are n(n + 1)
data in total, then the total bytes needed to store a main learning
table are 2n(n + 1), namely, (n(n + 1)/219) megabytes. When
n = 1000, 1.9 MB is needed, whereas for n = 5000, 47.7 MB
is needed. It is clear that when the problem size is small, we
can directly store the whole main learning table; but when the
problem size is large, it is difficult. Thus, the main learning
table is divided into s sublearning tables, which are labeled as
T 1,T 2, . . . ,T s, and each one has (n(n + 1)/2s) rows, so that
they are fit for the available memory.

Suppose Li,j = (l1, l2, . . . , ln) obtains a self-learning op-
portunity. Then, two self-learning strategies can be used,
which are given in Algorithms 1 and 2, respectively, where
Learning(Li,j) is a Boolean flag attached to each agent to
determine which strategy is used.

232 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Algorithm 1 Self-Learning Strategy 1
Step 1: Let q ← 1.
Step 2: Generate T q.
Step 3: Randomly select a row j from T q; generate a =

(a1, a2, . . . , an) according to

ai =
{

li,
(
i < T q

j,1

)
or

(
i > T q

j,2

)
1 − li, otherwise

, 1 ≤ i ≤ n.

(8)

Step 4: If Energy(a) > Energy(Li,j), then let
Learning(a) ← False, Li,j ← a, and stop.

Step 5: Delete the jth row from T q; if T q is empty, then let
q ← q + 1.

Step 6: If q ≤ s, then go to Step 2; otherwise,
Learning(Li,j) ← True, and stop.

Algorithm 2 Self-Learning Strategy 2
Step 1: Generate a permutation of 1, 2, . . . , n, that is,

(p1, p2, . . . , pn); q ← 1.
Step 2: Generate T q.
Step 3: Randomly select a row j from T q; generate a =

(a1, a2, . . . , an) according to

api
=

{
lpi

,
(
i < T q

j,1

)
or

(
i > T q

j,2

)
1 − lpi

, otherwise
, 1 ≤ i ≤ n.

(9)

Step 4: If Energy(a) > Energy(Li,j), then let
Learning(a) ← False, Li,j ← a, and stop.

Step 5: Delete the jth row from T q; if T q is empty, then let
q ← q + 1.

Step 6: If q ≤ s, then go to Step 2; otherwise, stop.

The first strategy iteratively selects a segment of Li,j and
reverses it until the energy of Li,j is increased or the main
learning table is empty. The second strategy first rearranges
Li,j and then iteratively selects a segment of Li,j and reverses
it until the energy of Li,j is increased. When the energy of
Li,j cannot be increased by the first strategy, the probability
of increasing the energy by the same strategy in the future is
very low. Thus, Learning(Li,j) is set to true when the first
strategy fails to increase the energy. That is to say, usually, the
first strategy is used, and only when Learning(Li,j) is true is
the second strategy used instead.

III. MAEA-CMOPS AND ITS CONVERGENCE

A. Implementation of MAEA-CmOPs

To solve CmOPs, all agents must orderly adopt the compe-
tition behavior and the self-learning behavior. Here, the two
behaviors are controlled by means of evolution so that the agent
lattice can evolve generation by generation. At each generation,
the competitive behavior is first performed by each agent. As a
result, the agents with low energy are cleaned out from the agent
lattice so that there is more space developed for the agents with
higher energy. Then, the self-learning behavior is performed by
some good agents. This process is performed iteratively until the
stop criteria are satisfied. The details are given in Algorithm 3.

Algorithm 3 MAEA-CmOPs
Step 1: Initialize the agent lattice L0: generate (Lsize ×

Lsize) agents, and let Learning(Li,j) ← False, where i, j =
1, 2, . . . , Lsize; t ← 0.

Step 2: If the termination criteria are satisfied, then output
the agent with maximum energy in the current agent lattice
and stop.

Step 3: Perform the competition behavior on each agent in
Lt, that is, if ∀a ∈ N i,j , Energy(a) ≤ Energy(Lt

i,j), then

let L
t+(1/2)
i,j ← Lt

i,j ; otherwise, select a strategy to generate a

new agent c, Learning(c) ← False, and L
t+(1/2)
i,j ← c.

Step 4: Perform the self-learning behavior on each agent
in Lt+(1/2), that is, if ∀a ∈ N i,j , Energy(a) ≤ Energy

(Lt+(1/2)
i,j) and Learning(Lt+(1/2)

i,j) = False, then perform

Algorithm 1 on L
t+(1/2)
i,j ; if ∀a ∈ N i,j , Energy(a) ≤

Energy(Lt+(1/2)
i,j) and Learning(Lt+(1/2)

i,j) = True, then

perform Algorithm 2 on L
t+(1/2)
i,j ; let Lt+1

i,j ← L
t+(1/2)
i,j .

Step 5: Let t ← t + 1, and go to Step 2.

In traditional EAs, individuals that can generate offspring
are usually selected from the whole population. Thus, the
global fitness distribution of the population must be determined
in advance. However, in nature, a global selection does not
exist, and the global fitness distribution cannot be determined
either. In fact, the real natural selection only occurs in a local
environment, and each individual can only interact with those
around it. That is, in some phases, the natural evolution is just
a kind of local phenomenon. The information can be shared
globally only after a process of diffusion.

Algorithm 3 shows that, in MAEA-CmOPs, since each agent
can only sense its local environment, its behaviors can only take
place between it and its neighbors. There is no global selection
at all, so the global fitness distribution is not required. An agent
interacts with its neighbors so that information can be trans-
ferred to them. In such a manner, the information is diffused
to the whole agent lattice. As can be seen, the evolutionary
mechanism based on the agent lattice used in MAEA-CmOPs
is closer to the real evolutionary mechanism in nature than that
based on the population model used in traditional EAs.

B. Convergence of MAEA-CmOPs

The search space S is a discrete state space, so the number of
elements of S is finite. Thus, the number of all different energy
values is finite since each element can only have one energy
value. Let the set of all different energy values be E, namely

E = {Energy(a) |a ∈ S} =
{

E1, E2, . . . , E|E|
}

(10)

where E1 > E2 > · · · > E|E|. Clearly, E1 is the global op-
timum solution. This immediately gives us the opportunity
to partition S into a collection of nonempty subsets, namely,
{Si}, where

Si =
{
a |a ∈ S and Energy(a) = Ei

}
, i = 1, 2, . . . , |E|.

(11)
S1 consists of all agents whose energies are E1.

LIU et al.: MULTIAGENT EVOLUTIONARY ALGORITHM FOR COMBINATORIAL OPTIMIZATION PROBLEMS 233

Let the energy of an agent lattice L be labeled as
Energy(L), which is equal to the energy of the best agent in L.
Let L be the set of all agent lattices. Thus, L can be partitioned
into a collection of nonempty subsets, namely, {Li}, where

Li =
{
L |L ∈ L and Energy(L) = Ei

}
,

i = 1, 2, . . . , |E|. (12)

L1 consists of all agent lattices whose energies are E1.
Let Lij , i = 1, 2, . . . , |E|, j = 1, 2, . . . , |Li|, be the jth

agent lattice in Li. During the evolutionary process, Lij is
transformed into another one, namely, Lkl, and this process
can be viewed as a transition from Lij to Lkl. Let pij.kl be
the probability of transition from Lij to Lkl, pij.k be the
probability of transition from Lij to any agent lattice in Lk,
and pi.k be the probability of transition from any agent lattice
in Li to any agent lattice in Lk. Then, we have the following
theorem for MAEA-CmOPs.

Theorem 1: In MAEA-CmOPs, ∀Lij ∈ Li, i = 1, 2, . . . ,
|E|, j = 1, 2, . . . , |Li|, we have 1) ∀ k > i, pi.k = 0, and 2)
∃ k < i, pi.k > 0.

Proof: Letting Lij be the agent lattice in the tth gen-
eration, which is labeled as Lt for convenience, and letting
at be the agent with maximum energy in Lt, then we have
Energy(at) = Ei.

1) According to Step 3 of Algorithm 3, we have at ∈
Lt+(1/2). Because Step 4 of Algorithm 3 can only in-
crease the energy of agents, we have

Energy(Lt+1) ≥ Energy(Lt) ⇒ ∀ k > i, pij.kl = 0

⇒ ∀ k > i, pij.k =
|Lk |∑
l=1

pij.kl = 0 ⇒ ∀ k > i, pi.k = 0. (13)

2) Letting at+(1/2) be the agent with the maximum
energy in Lt+(1/2), then we have Energy(at+(1/2)) ≥
Energy(at). Thus, there are two cases:

Case 2.1) Energy(at+(1/2)) > Energy(at). It is clear
that ∃ k < i, pi.k > 0.

Case 2.2) Energy(at+(1/2)) = Energy(at). According
to Step 4 of Algorithm 3, at+(1/2) will ob-
tain a self-learning opportunity. Supposing ∃a′,
Energy(a′) = Ek > Ei, without loss of gener-
ality, the values of the (i1)th, (i2)th, . . . , (in′)th
bits in a′ are different from those corresponding
bits in at+(1/2) and (i1 < i2 < · · · < in′).

According to the values of Learning(at+(1/2)) and
(i1, i2, . . . , in′), there are three cases to determine the
probability of transition from at+(1/2) to a′, which is
labeled as Pr{at+(1/2) → a′}:
1) Learning(at+(1/2)) = True: The self-learning be-

havior is performed by at+(1/2) with Algorithm 2.
According to Step 1 of Algorithm 2, there are (n!)
permutations of n integers, and only ((n − n′ + 1)! ×
n′!) permutations can make i1, i2, . . . , in′ succeed to

each other. Based on the definition of learning table
and Steps 2–6 of Algorithm 2, we have

Pr{at+1/2 → a′} >

(
1

n(n+1)
2

× (n − n′ + 1)! × n′!
n!

)
> 0

(14)

where Pr{•} denotes the probability of the event in
“{}.” Therefore, ∃ k < i, pi.k > 0.

2) Learning(at+(1/2)) = False and (∀ 1 ≤ j <
n′, ij+1 − ij = 1): The self-learning behavior is
performed by at+(1/2) with Algorithm 1. Based
on the definition of learning table and Steps 2–6,
we have

Pr{at+1/2 → a′} >

(
1
/

n(n + 1)
2

)
> 0. (15)

Therefore, ∃ k < i, pi.k > 0.
3) Learning(at+(1/2)) = False and (∃ 1 ≤ j <

n′, ij+1 − ij > 1): The self-learning behavior is
performed by at+(1/2) with Algorithm 1. Clearly,
any row of the main learning table cannot transform
at+(1/2) to a′. If Algorithm 1 stops at Step 4,
then it demonstrates that a better agent has been
found; otherwise, Learning(at+(1/2)) is set to True,
and at+(1/2) is added into Lt+1. Apparently,
we have a(t+1)+(1/2) ≥ at+1 ≥ at+(1/2). If
a(t+1)+(1/2) > at+(1/2), then it demonstrates that
Lt has been transformed into the agent lattice with
higher energy; otherwise, if a(t+1)+(1/2) = at+(1/2),
at+(1/2) can obtain a self-learning opportunity.
At this moment, Learning(at+(1/2)) = True.
Therefore, ∃ k < i, pi.k > 0. �

This theorem shows that there is always a positive probability
to transit from an agent lattice to another with higher energy
and a zero probability to another with lower energy. Thus,
once MAEA-CmOP enters L1, it will never go out. Before
proving the convergence of MAEA-CmOPs, we first revisit an
important existing theorem.

1) Theorem 2 [23]: Let P ′ : n × n be a reducible stochastic
matrix, which means that by applying the same permutations to

rows and columns, P ′ can be brought into the form

(
C 0
R T

)
,

where C : m × m is a primitive stochastic matrix, and
R,T �= 0. Then

P ′∞ = lim
k→∞

P ′k

= lim
k→∞

(
Ck 0

k−1∑
i=0

T iRCk−i T k

)

=
(

C∞ 0
R∞ 0

)
(16)

is a stable stochastic matrix with P ′∞ = 1′p′∞, where p′∞ =
p′0P ′∞ is unique regardless of the initial distribution, and p′∞

satisfies p′∞i > 0 for 1 ≤ i ≤ m and p′∞i = 0 for m < i ≤ n.

234 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Based on Theorems 1 and 2 and [24], the convergence of
MAEA-CmOPs is proved as follows.

Theorem 3: MAEA-CmOP converges to the global optimum
solutions.

Proof: It is clear that one can consider each Li, i =
1, 2, . . . , |E|, as a state in a homogeneous finite Markov chain.
According to Theorem 1(1), the transition matrix P ′ of the
Markov chain can be written as follows:

P ′ =

⎛
⎜⎜⎝

p1.1 0 · · · 0
p2.1 p2.2 · · · 0

...
...

. . .
...

p|E|.1 p|E|.2 · · · p|E|.|E|

⎞
⎟⎟⎠ =

(
C 0
R T

)
(17)

where C = (p1.1), R = (p2.1, p3.1, . . . , p|E|.1)T , and T =⎛
⎝ p2.2 · · · 0

...
. . .

...
p|E|.2 · · · p|E|.|E|

⎞
⎠. Theorem 1 (2) shows that R �= 0,

T �= 0, and C = (p1.1) = (1) is a primitive stochastic matrix.
Thus, P ′ is a reducible stochastic matrix and satisfies the
conditions in Theorem 2. Therefore, P ′∞ is a stable stochastic
matrix and is equal to

P ′∞ = lim
k→∞

P ′k

= lim
k→∞

(
Ck 0

k−1∑
i=0

T iRCk−i T k

)

=
(

C∞ 0
R∞ 0

)
. (18)

Since P ′∞ is a stochastic matrix, the summation of any row
in P ′∞ must be equal to 1. Then, we have C∞ = (1), and
R∞ = (1, 1, . . . , 1)T , that is,

P ′∞ =

⎛
⎜⎜⎝

1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

⎞
⎟⎟⎠ . (19)

Therefore

lim
t→∞

Pr
{
Energy(Lt) = E1

}
= 1. (20)

This implies that MAEA-CmOP converges to the global
optimum solutions. �

IV. EXPERIMENTS ON DECEPTIVE PROBLEMS

Goldberg et al. considered in [25] that deceptive problems
are important test functions for testing GAs or other algorithms
with similar search mechanisms. Therefore, we use various
large-scale deceptive functions, which are constructed by four
small-scale deceptive functions, namely, subfunctions, in com-
mon use to test the performance of MAEA-CmOPs in this
section. These four subfunctions are given in (21)–(24), where
the value of each variable is set to 0 or 1, and u represents the
number of variables whose value is 1.

Goldberg’s three-order deceptive function

fGoldberg3(a1, a2, a3)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

30, (a1 = 1) and (a2 = 1) and (a3 = 1)
28, (a1 = 0) and (a2 = 0) and (a3 = 0)
26, (a1 = 0) and (a2 = 0) and (a3 = 1)
22, (a1 = 0) and (a2 = 1) and (a3 = 0)
14, (a1 = 1) and (a2 = 0) and (a3 = 0)
0, otherwise

. (21)

Three-order deceptive function [26]

fdeceptive3(a1, a2, a3) =

⎧⎪⎨
⎪⎩

0.9, u = 0
0.8, u = 1
0, u = 2
1, u = 3

. (22)

Five-order trap function [27]

ftrap5(a1, a2, a3, a4, a5) =
{

5, u = 5
4 − u, otherwise

. (23)

Six-order bipole deceptive function [26]

fbipolar6(a1, a2, a3, a4, a5, a6)

=

⎧⎪⎨
⎪⎩

0.9, u = 3
0.8, (u = 2) and (u = 4)
0, (u = 1) and (u = 5)
1, (u = 0) and (u = 6)

. (24)

Apparently, the global optimum solutions of fGoldberg3,
fdeceptive3, and ftrap5 are the vectors with all values equal to
1, and those of fbipolar6 are the vectors with all values equal to
1 or 0. The four subfunctions above have different complexity
and properties, so the functions made up of them can validate
an algorithm’s performance comprehensively.

According to the properties of variables in subfunctions,
the deceptive functions can be divided into three classes. The
first class is strong-linkage deceptive functions whose variables
are connected to each other. The second class is weak-linkage
deceptive functions whose variables are not connected to each
other. The sets of variables in different subfunctions of both of
these two kinds of functions are not intersected. Thus, the third
class is overlapping-linkage functions whose sets of variables
in different subfunctions are intersected. In this section, all
these three kinds of deceptive functions are used to test the
performance of MAEA-CmOPs.

Some parameters must be assigned before MAEA-CmOPs
can be used to solve problems. First, since Lsize × Lsize is
equivalent to the population size in traditional EAs, Lsize can
be selected from 3 to 10 in general and is set to 5 here. Second,
because s is used to adjust the size of the learning table so
that it can be fit for the memory available, and because it
has no effect on the performance, it is set to 1 here. Third,
since r of the competition behavior is fixed to 1, it does not
need to be adjusted. Fourth, r of the self-learning behavior is
used to control how many agents can obtain the self-learning
opportunity. The smaller it is, the more agents can obtain the
self-learning opportunity, then the higher the computational

LIU et al.: MULTIAGENT EVOLUTIONARY ALGORITHM FOR COMBINATORIAL OPTIMIZATION PROBLEMS 235

TABLE I
AVERAGE NUMBER OF FUNCTION EVALUATIONS OVER 50
INDEPENDENT RUNS OF MAEA-CmOPs AND COMPARISON

WITH OTHER ALGORITHMS FOR f1 ∼ f4

cost needs. Therefore, it is set to 2 to save the computational
cost. Finally, the stop criterion is set to find out a global
optimum solution.

A. Strong-Linkage Deceptive Functions

The four strong-linkage deceptive functions used here are

f1(a) =
n/3∑
i=1

fGoldberg3(a3i−2, a3i−1, a3i)

f2(a) =
n/3∑
i=1

fdeceptive3(a3i−2, a3i−1, a3i)

f3(a) =
n/5∑
i=1

ftrap5(a5i−4, a5i−3, a5i−2, a5i−1, a5i)

f4(a) =
n/6∑
i=1

fbipolar6(a6i−5, a6i−4, a6i−3, a6i−2, a6i−1, a6i).

(25)

The experimental results in terms of the average number
of function evaluations over 50 independent runs of MAEA-
CmOPs when n = 30, 60, and 90 are given in Table I and are
also compared with those in [26], [28], and [29]. The results
show that, for f1, f2, and f3, the computational cost of MAEA-
CmOPs is far smaller than those of the other algorithms and is
only about 10%–20% of those in [26] and [29]. For f4, when
n = 30, MAEA-CmOP outperforms the other methods, and
when n = 60 and 90, MAEA-CmOP outperforms the method
in [26] but is outperformed by the method in [29].

To further validate MAEA-CmOP’s performance, particu-
larly the performance in processing large-scale problems, the
following experiments are done: for f1 ∼ f3, n increases from
30 to 990 in steps of 60; and for f4, n increases from 30 to
210 in steps of 30. For each value of n, 50 independent runs of
MAEA-CmOP are done, and the average number of function
evaluations is shown in Fig. 2.

Fig. 2. Number of function evaluations increasing with the problem size of
MAEA-CmOPs for strong-linkage deceptive functions.

TABLE II
COMPARISON IN TERMS OF THE AVERAGE NUMBER OF FUNCTION

EVALUATIONS FOR f2 AND f3 BETWEEN MAEA-CmOPs AND

THE METHOD IN [30]

As can be seen, the time complexities of f1 ∼ f4 can be ap-
proximated by (0.33 × n2.27), (0.34 × n2.28), (0.41 × n2.26),
and (0.11 × n2.90), respectively. The coefficients of all these
four approximate functions are smaller than 1. The exponentials
of f1 ∼ f3 are less than 2.28, and that of f4 is a bit larger,
namely, 2.90. In general, for all these four functions, the time
complexity of MAEA-CmOP increases in a polynomial basis
with the problem size.

Similar experiments have been done in [30] for f2 and f3.
In [30], n increases from 60 to 240 for f2 and from 100 to
250 for f3. Thus, a comparison between MAEA-CmOP and the
method in [30] is given in Table II, where the results of the
method in [30] are obtained by their software.1 Table II shows
that the computational cost of MAEA-CmOP is far smaller than
that of the method in [30] and is only about 10%–40% of the
computational cost of the method in [30]. In addition, even
when n increases to 990, the computational cost of MAEA-
CmOP is still less than 2.5 million function evaluations.

1http://www-illigal.ge.uiuc.edu/sourcecd.html.

236 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 3. Number of function evaluations increasing with the problem size of MAEA-CmOPs for weak-linkage deceptive functions.

TABLE III
COMPARISON BETWEEN MAEA-CmOPs FOR WEAK-LINKAGE AND STRONG-LINKAGE DECEPTIVE FUNCTIONS

B. Weak-Linkage Deceptive Functions

The four weak-linkage deceptive functions used here are

f5(a) =
n/3∑
i=1

fGoldberg3(ai, ai+n/3, ai+2n/3)

f6(a) =
n/3∑
i=1

fdeceptive3(ai, ai+n/3, ai+2n/3)

f7(a) =
n/5∑
i=1

ftrap5(ai, ai+n/5, ai+2n/5, ai+3n/5, ai+4n/5)

f8(a) =
n/6∑
i=1

fbipolar6(ai, ai+n/6, ai+2n/6, ai+3n/6,

ai+4n/6, ai+5n/6). (26)

The experiments in this section are designed as follows: for
f5, f6, and f8, n increases from 30 to 210 in steps of 30,
and 50 independent runs of MAEA-CmOP are done on each
selected n. For f7, since the computational cost is too high, only
the experiments when n = 30 and 60 are done. The average
number of function evaluations for f5, f6, and f8 is given
in Fig. 3.

As can be seen, the time complexities of f5, f6, and f8

can be approximated by (21.60 × n2.73), (6.82 × n2.95), and
(0.03 × n4.08), respectively. Therefore, for these three func-
tions, the time complexity of MAEA-CmOP still increases in
a polynomial basis with the problem size. For f8, although the
exponential of the approximate function is larger, the coefficient
is small, i.e., only 0.03. Apart from this, the number of function
evaluations of the method in [28] for f5 with n = 30 is 421 401,
whereas that of MAEA-CmOPs is 67 290 and is far smaller than
that of the method in [28].

Fig. 4. Number of function evaluations increasing with the problem size of
MAEA-CmOPs for overlapping-linkage deceptive functions.

In fact, the subfunctions of these four weak-linkage functions
are the same as those of the above four strong-linkage functions,
which are changed in the way the variables relate to each
other. According to the schema theorem and the building block
assumption, a weak-linkage function is more difficult than the
corresponding strong-linkage function. Thus, a comparison is
made between the results of MAEA-CmOP for strong-linkage
and weak-linkage functions in Table III.

As can be seen, from the viewpoint of the number of function
evaluations, weak-linkage deceptive functions need far more
function evaluations than the corresponding strong-linkage de-
ceptive functions. From the viewpoint of the time complex-
ity, f1 and f5, f2 and f6 are similar, but the coefficients of
weak-linkage functions are larger than those of strong-linkage

LIU et al.: MULTIAGENT EVOLUTIONARY ALGORITHM FOR COMBINATORIAL OPTIMIZATION PROBLEMS 237

TABLE IV
COMPARISON BETWEEN MAEA-CmOPs FOR STRONG-LINKAGE AND OVERLAPPING-LINKAGE DECEPTIVE FUNCTIONS

functions. In general, weak-linkage deception functions are
more difficult than strong-linkage ones.

C. Overlapping-Linkage Deceptive Functions

The four overlapping-linkage deceptive functions used
here are

f9(a) =

n−1
2∑

i=1

fdeceptive3(a2i−1, a2i, a2i+1)

f10(a) =
n−2∑
i=1

fdeceptive3(ai, ai+1, ai+2)

f11(a) =

n−1
4∑

i=1

ftrap5(a4i−3, a4i−2, a4i−1, a4i, a4i+1)

f12(a) =

n−3
2∑

i=1

ftrap5(a2i−1, a2i, a2i+1, a2i+2, a2i+3) (27)

where there is one overlapping variable between two successive
subfunctions in f9 and f11, two overlapping variables in f10,
and three overlapping variables in f12. The experiments in this
section are designed as follows: For f9 ∼ f12, n increases from
30 to 990 in steps of 60, and 50 independent runs of MAEA-
CmOP are done on each selected n, and the results are shown
in Fig. 4.

As can be seen, the time complexities of f9 ∼ f12 can be ap-
proximated by (0.46 × n2.22), (0.26 × n2.27), (0.26 × n2.31),
and (0.27 × n2.25), respectively. The approximation functions
of these four overlapping-linkage functions are similar to those
of f2 and f3, that is, all the coefficients are smaller than 1,
all exponentials are less than 2.31, and the time complexity
increases in a polynomial basis with the problem size. Apart
from this, the number of function evaluations of the method in
[29] for f9 with n = 30, 60, and 90 are 14 710, 40 270, and
76 120, respectively. While those of MAEA-CmOP are 852,
3880, and 9746, respectively, and are far smaller than those of
the method in [29].

In fact, f2, f9, and f10 use the same subfunctions, and f3,
f11, and f12 use the same subfunctions, and only the way
the variables relate to each other is different. Therefore, a
comparison between the performances of MAEA-CmOP on
strong-linkage and overlapping-linkage deceptive functions is
given in Table IV.

As can be seen, in general, the difficulty of overlapping-
linkage deceptive functions is similar to that of the correspond-
ing strong-linkage deceptive functions in both the number of
function evaluations and the time complexity. Moreover, the
temporal cost incurred by MAEA-CmOP keeps in the range of
1.5–2.5 million function evaluations, even for functions with
990 dimensions.

V. EXPERIMENTS ON HIERARCHICAL PROBLEMS

Many problems in business, engineering, and science have
a hierarchical structure. By hierarchy, we mean a system con-
sisting of subsystems, each of which is a hierarchy by itself,
until we reach some bottom level. The interactions within each
subsystem are of much higher magnitude than the interac-
tions between the subsystems. There are plenty of hierarchy
examples around us. A university consists of colleges, colleges
consist of departments, departments consist of laboratories and
offices, and so forth. A program code consists of procedures
and functions, procedures consist of single commands and
library calls, commands consist of machine code or assembly
language, and so forth [30].

These hierarchical problems do not like the above deceptive
functions, which can be decomposed into independent sub-
functions; instead, their functions interact with each other and
form a treelike hierarchical structure. To study the performance
of EAs in solving this kind of problem, Pelikan [30] made a
thorough research and designed two deceptive functions with
hierarchical structure. Thus, these two deceptive functions and
the famous hierarchical if-and-only-if (HIFF) function [31] are
used to test the performance of MAEA-CmOPs in this section.

A. Hierarchical Problems

A hierarchical problem consists of a structure, a mapping
function, and a function value. The input variables are at the
lowest level, and the mapping function maps a lower level to
an upper level, with a treelike structure resulting, and the sum
of function values in each level consisting the final function
value. Let a = (a1, a2, . . . , an) ∈ S, and the variables in the
ith level consisting of ai = (ai

1, a
i
2, . . . , a

i
ni), where a1 = a,

and the mapping function is fmapping.
1) HIFF Function [31]: The mapping function maps two

variables in the lower level and one variable in the upper level,
and the problem size must satisfy n = 2Level, and the number

238 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 5. Mapping process of the mapping function in HIFF function for the
example with n = 16.

of variables in each level satisfies (n1 = n), (ni × 2 = ni−1),
i = 2, 3, . . . , Level. The mapping function is given as

fmapping
HIFF

(
ai

j

)
=

⎧⎨
⎩

0,
(
ai−1
2j−1 = 0

)
and

(
ai−1
2j = 0

)
1,

(
ai−1
2j−1 = 1

)
and

(
ai−1
2j = 1

)
−, otherwise

(28)

where i = 2, 3, . . . , Level, j = 1, 2, . . . , ni, and an example
with n = 16 for the mapping process is also given in Fig. 5.

The function value in each level is computed by

f i
HIFF(ai) = 2i−1

ni∑
j=1

f i
j (29)

where f i
j =

{
1, (ai

j = 0) or (ai
j = 1)

0, otherwise
, i = 1, 2, . . . , Level.

The final function value is computed by

fHIFF(a) =
Level∑
i=1

f i
HIFF(ai)

+

⎧⎨
⎩

2Level,
(
aLevel
1 = aLevel

2 = 0
)

or
(
aLevel
1 = aLevel

2 = 1
)

0, otherwise
. (30)

2) Hierarchical Trap I [30]: The mapping function maps
three variables in a lower level to one variable in an upper level,
and the problem size must satisfy n = 3Level, and the number
of variables in each level satisfies (n1 = n), (ni × 3 = ni−1),
i = 2, 3, . . . , Level. The mapping function is given as

fmapping
HtrapI

(
ai

j

)

=

⎧⎨
⎩

0,
(
ai−1
3j−2 = 0

)
and

(
ai−1
3j−1 = 0

)
and

(
ai−1
3j = 0

)
1,

(
ai−1
3j−2 = 1

)
and

(
ai−1
3j−1 = 1

)
and

(
ai−1
3j = 1

)
−, otherwise

(31)

where i = 2, 3, . . . , Level, j = 1, 2, . . . , ni, and an example
with n = 27 for the mapping process is also given in Fig. 6.

Fig. 6. Mapping process of the mapping function in Hierarchical trap I for the
example with n = 27.

The function values of levels 1 to (Level − 1) are com-
puted as follows, where u denotes the number of 1’s in
(ai

3j−2, a
i
3j−1, a

i
3j):

f i
HtrapI(a

i) = 3i

ni/3∑
j=1

f i
j

(
ai
3j−2, a

i
3j−1, a

i
3j

)
(32)

where

f i
j

(
ai
3j−2, a

i
3j−1, a

i
3j

)
=

⎧⎨
⎩

1, (u = 3) or (u = 0)
0, u = 2
0.5, u = 1

.

The final function value is computed as follows, where u
denotes the number of 1’s in (aLevel

1 , aLevel
2 , aLevel

3):

fHtrapI(a) =
Level−1∑

i=1

f i
HtrapI(a

i)

+3Level ×

⎧⎪⎨
⎪⎩

1, u = 3
0, u = 2
0.45, u = 1
0.9, u = 0

. (33)

3) Hierarchical Trap II [30]: The structure and the mapping
function are the same of that of Hierarchical Trap I. The func-
tion values of levels 1 to (Level − 1) are computed as follows,
where u denotes the number of 1’s in (ai

3j−2, a
i
3j−1, a

i
3j):

f i
HtrapII(a

i) = 3i

ni/3∑
j=1

f i
j

(
ai
3j−2, a

i
3j−1, a

i
3j

)
(34)

where

f i
j

(
ai
3j−2, a

i
3j−1, a

i
3j

)
=

{
1, u=3
1+0.05/Level−u/2, otherwise .

The final function value is computed as follows, where u
denotes the number of 1’s in (aLevel

1 , aLevel
2 , aLevel

3):

fHtrapII(a) =
Level−1∑

i=1

f i
HtrapII(a

i)

+3Level ×

⎧⎪⎨
⎪⎩

1, u = 3
0, u = 2
0.45, u = 1
0.9, u = 0

. (35)

LIU et al.: MULTIAGENT EVOLUTIONARY ALGORITHM FOR COMBINATORIAL OPTIMIZATION PROBLEMS 239

Fig. 7. Number of function evaluations increasing with the problem size of MAEA-CmOPs for hierarchical problems.

TABLE V
COMPARISON IN TERMS OF THE NUMBER OF FUNCTION EVALUATIONS IN

SOLVING fHIFF, fHtrapI, AND fHtrapII BETWEEN MAEA-CmOPs AND

THE METHOD IN [30]

Apparently, the global optimum solutions of fHIFF are the
vectors with all values equal to 1 or 0, whereas those of fHtrapI

and fHtrapII are the vectors with all values equal to 1.

B. Experiments and Analyses

The parameters of MAEA-CmOPs in this section are the
same of those in Section IV, and the experiments are designed
as follows: For fHIFF, n increases from 16 (24) to 2048 (211),
and for fHtrapI and fHtrapII, n increases from 27 (33) to 2187
(37). Fifty independent runs of MAEA-CmOPs are done on
each selected n. The number of function evaluations is shown
in Fig. 7.

As can be seen, the time complexities of fHIFF, fHtrapI,
and fHtrapII can be approximated by (0.19 × n2.14), (0.62 ×
n2.19), and (0.57 × n2.20), respectively. The time complexities
of MAEA-CmOPs in solving these three functions are similar,
that is, all the coefficients of the approximation functions are
smaller than 1, whereas all the exponentials are less than 2.20.

Similar experiments have been done in [30] for fHIFF,
fHtrapI, and fHtrapII, where n increases from 16 to 512 for
fHIFF, and from 27 to 729 for fHtrapI, and from 27 to 243 for
fHtrapII. Thus, a comparison between MAEA-CmOPs and the
method in [30] is given in Table V.

As can be seen, the computational cost of MAEA-CmOPs
is far smaller than that of the method in [30] and is only
20%–40% of that of the method in [30]. In addition, for fHIFF,
when the problem size increases to 2048, the temporal cost
incurred by MAEA-CmOPs only reaches 2.3 million function
evaluations; and for fHtrapI and fHtrapII, when the problem
size increases to 2187, although the computational cost is a bit
larger, it is still about 13 million function evaluations. All these
results show that MAEA-CmOP obtains a good performance in
solving large-scale hierarchical problems.

VI. CONCLUSION

Multiagent systems and EAs have been integrated in this
paper, and the agent behaviors are realized by means of evo-
lution. Thus, a new algorithm for CmOPs, namely, MAEA-
CmOPs, has been proposed, and its convergence is analyzed
theoretically. In the experiments, strong-linkage, weak-linkage,
and overlapping-linkage deceptive functions and hierarchical
problems with treelike structure are used to test the performance
of MAEA-CmOPs comprehensively, and large-scale problems
whose dimensions are more than 1000 are used to study the
time complexity of MAEA-CmOPs.

The experimental results show that deceptive functions
have different difficulties, depending on the way to con-
nect the subfunctions. For MAEA-CmOPs, strong-linkage and
overlapping-linkage deceptive functions consisting of three-
and five-order deceptive functions have the same time com-
plexity, namely, O(n2.2) ∼ O(n2.3), whereas bipole deceptive
and weak-linkage functions are more difficult since the time
complexity is O(n2.7) ∼ O(n4.0). For hierarchical problems,
the time complexity of MAEA-CmOPs is O(n2.1) ∼ O(n2.2).

To summarize, MAEA-CmOP obtains a polynomial time
complexity for all test problems. In addition, the parameters
of MAEA-CmOPs are simple and easy to be tuned. All of the
experimental results are obtained under the same parameter
settings, which illustrates that MAEA-CmOP is robust and
easy to use.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
helpful comments and valuable suggestions.

240 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

REFERENCES

[1] J. H. Holland, Adaptation in Nature and Artificial System. Cambridge,
MA: MIT Press, 1992.

[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1996. 3rd Revised and
Extended.

[3] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1998. Reprint ed.

[4] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford,
U.K.: Oxford Univ. Press, 1996.

[5] D. B. Fogel, Evolutionary Computation: The Fossil Record, 1st ed.
New York: Wiley-IEEE Press, 1998.

[6] E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 1st ed.
ser. Natural Computing Series. New York: Springer-Verlag, 2003.

[7] W. Zhong, J. Liu, M. Xue, and L. Jiao, “A multiagent genetic algorithm
for global numerical optimization,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 34, no. 2, pp. 1128–1141, Apr. 2004.

[8] J. Liu, W. Zhong, and L. Jiao, “A multiagent evolutionary algorithm for
constraint satisfaction problems,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 36, no. 1, pp. 54–73, Feb. 2006.

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[10] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence, 3rd ed. New York: Wiley-IEEE Press, 2005.

[11] J. Liu, W. Zhong, L. Jiao, and X. Li, “Moving block sequence and organi-
zational evolutionary algorithm for general floorplanning with arbitrarily
shaped rectilinear blocks,” IEEE Trans. Evol. Comput., vol. 12, no. 5,
pp. 630–646, Oct. 2008.

[12] J. Liu, W. Zhong, and L. Jiao, “An organizational evolutionary algorithm
for numerical optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 37, no. 4, pp. 1052–1064, Aug. 2007.

[13] L. Jiao, J. Liu, and W. Zhong, “An organizational coevolutionary algo-
rithm for classification,” IEEE Trans. Evol. Comput., vol. 10, no. 1,
pp. 67–80, Mar. 2006.

[14] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. New York: Addison-Wesley, 1999.

[15] J. Liu, Autonomous Agents and Multi-Agent Systems: Explorations in
Learning, Self-Organization, and Adaptive Computation. Singapore:
World Scientific, 2001.

[16] J. Liu, Y. Y. Tang, and Y. C. Cao, “An evolutionary autonomous agents
approach to image feature extraction,” IEEE Trans. Evol. Comput., vol. 1,
no. 2, pp. 141–158, Jul. 1997.

[17] J. Liu, H. Jing, and Y. Y. Tang, “Multi-agent oriented constraint satisfac-
tion,” Artif. Intell., vol. 136, no. 1, pp. 101–144, Mar. 2002.

[18] P. T. Sandanayake and D. J. Cook, “ONASI: Online agent modeling using
a scalable Markov model,” Int. J. Pattern Recogn. Artif. Intell., vol. 17,
no. 5, pp. 757–779, 2003.

[19] E. Alba and B. Dorronsoro, Cellular Genetic Algorithms. New York:
Springer-Verlag, 2008.

[20] D. Whitley, “Cellular genetic algorithms,” in Proc. 5th Int. Conf. Genetic
Algorithms, R. K. Belew and L. B. Booker, Eds, 1993, p. 658.

[21] T. Nakashima, T. Ariyama, T. Yoshida, and H. Ishibuchi, “Performance
evaluation of combined cellular genetic algorithms for function optimiza-
tion problems,” in Proc. IEEE Int. Symp. Comput. Intell. Robot. Autom.,
Kobe, Japan, 2003, vol. 1, pp. 295–299.

[22] G. Folino, C. Pizzuti, and G. Spezzano, “Parallel hybrid method for SAT
that couples genetic algorithms and local search,” IEEE Trans. Evol.
Comput., vol. 5, no. 4, pp. 323–334, Aug. 2001.

[23] M. Iosifescu, Finite Markov Processes and Their Applications.
Chichester, U.K.: Wiley, 1980.

[24] G. Rudolph, “Convergence analysis of canonical genetic algorithms,”
IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 96–101, Jan. 1994.

[25] D. E. Goldberg, K. Deb, and B. Korb, “Messy genetic algorithms re-
visited: Studies in mixed size and scale,” Complex Syst., vol. 4, no. 4,
pp. 415–444, 1990.

[26] M. Pelikan and D. E. Goldberg, “BOA: The Bayesian optimization
algorithm,” Illinois Genetic Algorithms Lab.. Univ. Illinois, Urbana-
Champaign, Urbana, IL, IlliGAL Rep. 98013, 1998.

[27] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,”
Illinois Genetic Algorithms Lab., Univ. Illinois, Urbana-Champaign,
Urbana, IL, IlliGAL Rep. 91009, 1991.

[28] S. Wu, Q. Zhang, and H. Chen, “A new evolutionary algorithm based on
family eugenics,” J. Softw., vol. 8, no. 2, pp. 137–144, 1997. (in Chinese).

[29] Y. Lin and X. Yang, “Research on fast evolutionary algorithms based on
probabilistic models,” Acta Electronica Sinica, vol. 29, no. 2, pp. 178–
181, 2001. (in Chinese).

[30] M. Pelikan, Bayesian Optimization Algorithm: From Single Level to
Hierarchy. Urbana, IL: Illinois Genetic Algorithms Lab., Univ. Illinois,
Urbana-Champaign, 2002.

[31] R. A. Watson, G. S. Hornby, and J. B. Pollack, Modeling Building-Block
Interdependency, vol. 1498. Berlin, Germany: Springer-Verlag, 1998,
pp. 97–106.

Jing Liu (M’06) was born in Xi’an, China. She
received the B.S. degree in computer science and
technology and the Ph.D. degree in circuits and
systems from Xidian University, Xi’an, in 2000
and 2004, respectively.

She is currently a Professor with Xidian Uni-
versity. Her research interests include evolutionary
computation, multiagent systems, and data mining.

Weicai Zhong (M’06) was born in Jiangxi, China.
He received the B.S. degree in computer science
and technology and the Ph.D. degree in pattern
recognition and intelligent information system from
Xidian University, Xi’an, China, in 2000 and 2004,
respectively.

He is currently a Postdoctoral Fellow with Xidian
University. His research interests include evolu-
tionary computation, data mining, and statistical
learning.

Licheng Jiao (SM’89) was born in Shaanxi, China,
on October 15, 1959. He received the B.S. degree
from Shanghai Jiaotong University, Shanghai, China,
in 1982 and the M.S. and Ph.D. degrees from Xi’an
Jiaotong University, Xi’an, China, in 1984 and 1990,
respectively.

From 1984 to 1986, he was an Assistant Professor
with the Civil Aviation Institute of China, Tianjing,
China. During 1990 and 1991, he was a Postdoctoral
Fellow with the National Key Lab for Radar Signal
Processing, Xidian University, Xi’an. He is currently

the Dean of the School of Electronic Engineering and the Director of the
Institute of Intelligent Information Processing, Xidian University. He is the
author of three books: Theory of Neural Network Systems (Xi’an, China: Xidian
University Press, 1990), Theory and Application on Nonlinear Transformation
Functions (Xi’an, China: Xidian University Press, 1992), and Applications and
Implementations of Neural Networks (Xi’an, China: Xidian University Press,
1996). He is the author or coauthor of more than 150 scientific papers. His
current research interests include signal and image processing, nonlinear circuit
and system theory, learning theory and algorithms, optimization problems,
wavelet theory, and data mining.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

