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A Genetic Algorithm for Searching
Spatial Configurations
M. Andrea Rodríguez and Mary Carmen Jarur

Abstract—Searching spatial configurations is a particular case
of maximal constraint satisfaction problems, where constraints
expressed by spatial and nonspatial properties guide the search
process. In the spatial domain, binary spatial relations are typically
used for specifying constraints while searching spatial configura-
tions. Searching configurations is particularly intractable when
configurations are derived from a combination of objects, which
involves a hard combinatorial problem. This paper presents a
genetic algorithm (GA) that combines a direct and an indirect
approach to treating binary constraints in genetic operators. A
new genetic operator combines randomness and heuristics for
guiding the reproduction of new individuals in a population.
Individuals are composed of spatial objects whose relationships
are indexed by a content measure. This paper describes the GA
and presents experimental results that compare the genetic versus
a deterministic and a local-search algorithm. These experiments
show the convenience of using a GA when the complexity of
the queries and databases do no guarantee the tractability of a
deterministic strategy.

Index Terms—Constraint satisfaction problems (CSPs), evolu-
tionary computation, genetic algorithm (GA), geographic informa-
tion systems, information retrieval.

I. INTRODUCTION

SYSTEMS THAT handle spatial information face major
challenges due to the complexity of the information and the

large amount of data usually involved in such systems. Spatial
information is inherently complex since it refers to objects of
more than one dimension that cannot be organized in a strict
one-dimensional order [44], [80]. At the same time, spatial
information involves data about the geometry and attributes
of objects, which tends to produce large databases. These
characteristics of spatial information make the retrieval process
an important part of current spatial information systems that
pursue user satisfaction in terms of quality and efficiency of
responses.

In the context of multimedia information retrieval, an impor-
tant part of the research effort has concentrated on image re-
trieval [1], [6], [7], [31]–[33], [76], [78]. In these studies, ele-
ments within an image are codified based on visual character-
istics, such as color, shape, and texture, and this codification is
then used for ranking images by their similarity with respect to a
user request that has been expressed by a visual example. Unlike
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previous studies on content-based retrieval of images, this work
takes an object-oriented view [74] of spatial information and fo-
cuses on searching spatial configurations that involve searching
sets of objects whose spatial relations constrain the desired an-
swers. An example of this kind of query is “find a hospital in an
urban area adjacent to a park and a highway.” This kind of query
can be expressed by a command language [19], or by a visual
language [8], [20], [75].

A query evaluation in a spatial database combines objects
from different thematic layers to construct desired answers
based on these objects’ spatial relations. This is a type of
constraint satisfaction problem (CSP), whose particular goal is
not to require that all assignments of variables in the query (i.e.,
instantiations with objects of the database) satisfy the query
constraints, but to optimize the number of satisfied constraints.
Thus, this is a maximal CSP [51]. To solve this type of CSP
problem in an exhaustive and complete manner may be in-
tractable for a large database, since one could need to explore all
combinatorial possibilities of objects in the database. In some
cases, it is possible to reduce the domain being searched, by
filtering or indexing objects based on consistency values [56],
[58], [69]. This filtering, however, may not be efficient enough,
since there are hard combinatorial cases when deterministic
search algorithms become intractable [2], [45].

This paper describes a genetic algorithm (GA) for searching
spatial configurations. Although there are multiple alternatives
within the domain of evolutionary computing for treating cases
of CSP problems [12], [15], [16], [79], this work uses GAs be-
cause they present a good balance between exploration and ex-
ploitation. While GAs exploit the best solutions for improve-
ment based on fitness functions, they also explore the search
space based on the probabilities of mutation and selection [52].
Unlike other heuristic methods, such simulated annealing [46]
and tabu search [37], GAs handle a population of solutions that
competes for surviving at any evolutionary cycle. In this sense,
we consider that GAs may incorporate the concepts of simu-
lated annealing and tabu search by allowing individuals to de-
scribe particular solutions [52] and by adapting a classical GA
with new operators that are adjusted to the problem domain.

Our CSP is a case where there exists a large number of pos-
sible values that can be assigned to each variable. This charac-
teristic of the problem discourages us to use such an approach
as ant colony optimization [71], since we cannot have a prede-
fined construction graph on which ants lay pheromone trails and
choose their paths with respect to probabilities that depend on
pheromone trails. Considering an Ant Colony approach without
a predefined path graph, at each evolutionary cycle, ants con-
struct a complete assignment of variables that form a solution,
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Fig. 1. Graph representation of a configuration.

which in the domain of this work becomes a problem because
the number of possible values that can be assigned to variables
is still significant large. Based on [79], the best performing ant
colony optimization algorithm for many combinatorial prob-
lems are hybrid algorithms that combine an ant strategy with
a local search. In addition, changes in few objects that com-
pose a solution may strongly affect many objects’ relations (i.e.,
constraints), so it becomes difficult to define local activity rules
for agents such as the rules needed in the swarm intelligence
approach [72].

This work uses a direct approach to treating binary constraints
[16], since the characteristics of the problem allow us to re-
define an operator that takes advantage of the domain knowl-
edge and leads to an improvement in performance and quality
of results. The novelty of this work is the definition of an oper-
ator that combines randomness with heuristics over an indexed
domain of spatial objects for searching spatial configurations.
Using different data sets, the study compares the performance
of the genetic versus a deterministic approach and a local search
approach to searching spatial configurations.

The organization of the paper is as follows. Section II intro-
duces the domain problem. Then, Section III discusses related
work associated with searching spatial configurations and GAs
that handle CSPs. Section IV describes the framework for com-
paring spatial configurations. Section V presents the GA that has
been implemented. Section VI gives some experimental results.
Conclusions are given in Section VII.

II. PROBLEM DOMAIN

A content-based or similarity-based searching of spatial
configurations consists in evaluating and ranking configura-
tions based on the content similarity of candidate solutions
with respect to a query. In this work, queries are specified
with a visual language, such as VisualSeek [76] or Query by
Sketch [8], [20], and configurations (i.e., queries or candidate
solutions) are sets of objects and sets of constraints defined by
the topological relations between objects. Thus, a configuration
can be seen as a directed and labeled graph, where nodes are the
objects and directed edges are the binary topological relations
between objects (Fig. 1). Using a graph-based representation,
a spatial configuration is a complete graph with nodes (i.e.,
objects) and edges (i.e., topological relations).

In spatial databases, the combination of objects creates can-
didate solutions (Fig. 2). Queries in these systems are of vari-
able size, and databases contain a large number of objects or-
ganized into thematic layers. Since queries are of variable size,
it is impractical to a priori create configurations that could be
organized and indexed in order to reduce the search domain and

Fig. 2. Similarity-based searching of spatial configurations in spatial
databases.

speed up the query processing. Thus, objects must be dynam-
ically combined and tested against the variables specified in a
user query. In an exhaustive search of most similar configura-
tions, the systems need to perform all -combinations of ob-
jects, with being the number of objects in the query and
the number of objects in the database. Thus, for , the re-
trieval process is exponential in the size of the query [ ].
Similarly, considering a query evaluation as a process of sub-
graph isomorphism, where the query is a subgraph of the large
graph that represents a database, the problem of searching spa-
tial configurations has been proved to be NP-complete [13].

The evaluation of a spatial query composed of a set of objects
analyzes spatial constraints, which are based on the objects’ spa-
tial components. Spatial components, such as shape, area extent,
volume, and density, are often derived from positional informa-
tion; however, other spatial components, such as spatial rela-
tions of adjacency and containment, do not require absolute po-
sitional data [48]. These spatial relations represent higher levels
of abstraction than positional information [9], since they can be
represented by qualitative primitives, such as connectivity [65],
and with respect to a qualitative frame of reference (e.g., A is to
the left of B) [44].

Spatial relations between objects play a fundamental role in
spatial information, since such relations refer to the way people
perceive spatial configurations, how they reason about such con-
figurations, and how they describe configurations in a variety
of languages [24]. In the literature, three major types of spa-
tial relations are usually distinguished [65], [86]: topological
relations establish the concept of connectivity and are invariant
under continuous transformations of rotation, translation, and
scaling; direction relations are based on the existence of a vector
space and are subject to change under rotation, while they are in-
variant under translation and scaling; and distance relations ex-
press spatial properties that reflect the concept of a metric and,
therefore, change under scaling, but are invariant under trans-
lation and rotation. Among these spatial relations, topological
relations have been pointed out as particularly important for de-
scribing spatial scenes, since they capture the essence of a spa-
tial configuration—topology matters, metric refines [24].

This work concentrates on topological relations between
objects in a spatial configuration, in particular, topological
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Fig. 3. Eight topological relations between regions organized by their
conceptual neighborhoods [21].

relations between regions. Only regions are considered because
the spatial objects are represented by the objects’ minimum
bounding rectangles (MBRs). MBRs are commonly used in
spatial information systems for their computational properties
and for being usually sufficient for finding objects. Thus,
in current spatial information systems, searching for MBRs
represents a filter of candidate solutions.

Fig. 3 shows the eight topological relations that can be found
between two regions [23], [65], organized in a graph that con-
nects conceptual neighbors derived from the concept of gradual
changes [21]. For example, disjoint and meet are two neigh-
boring relations in this graph and, therefore, they are conceptu-
ally closer than disjoint and overlap. Refinements of these topo-
logical relations can be also introduced in order to differentiate
relations by taking into account metric characteristics of objects,
such as relative size and distances [25], [73]. So, for instance, a
pair of objects can be seen as further disjoint than another pair
of objects of the same size if the distance between objects in
the first pair is larger than the distance between objects in the
second pair.

III. RELATED WORK

There are few studies that address the retrieval of spatial con-
figurations as a problem that is independent of the type and
number of constraints. For this work, two related areas of study
are spatial information retrieval and GAs that handle binary
constraints.

A. Spatial Information Retrieval

Studies on spatial-information retrieval have focused on sim-
ilarity-based search of spatial configurations [49], [54], [56],
[58], [60]. These similarity-based approaches follow a common
strategy: 1) they define the set of spatial relations that can be
used in a query; 2) they define a similarity measure of spatial
relations; and 3) they define a search algorithm for similarity
retrieval.

Within the domain of spatial databases, retrieval by structural
queries (i.e., by spatial relations) is done on the basis of infor-
mation consisting of objects stored in relational tables and or-
ganized by thematic layers with spatial indexing methods (e.g.,
R-Tree) [67]. This technique answers queries as cascaded spa-
tial joins and is restrictive to the type of objects and relations [4],
[50], [59], [61], [62]. Although these studies provide efficient al-
gorithms for answering queries based on spatial constraints, the
use of these algorithms is restricted to query languages with a
limited number and type of constraints. They were not intended
for processing queries with variable and large number of ob-
jects, such as the case of a query by sketch.

Considering query processing as a type of CSPs, Papadias
et al. [56]–[58], [60], address retrieval of spatial configurations
without restrictions on the type of objects and relations. They
employ deterministic approaches with a forward checking
strategy that uses heuristics with a traditional indexing method
to restrict the search domain. Although these studies present an
alternative for searching spatial configurations in geographic
databases, their results are still discouraging for a general and
large-scale solution to the problem.

Exploring evolutionary alternatives, Papadias [55] presents a
searching algorithm based on genetic operators, where he com-
promises optimal versus efficient solutions by searching for sub-
optimal solutions rather than for the best solution. Papadias’
work uses traditional genetic operators with a nonindexing data-
base. A recent work by Arkoumanis et al. [2] shows promising
results based on two heuristic algorithms: an evolutionary and
a hill-climbing algorithm. These two algorithms look for an
overall optimal assignment from an indexing database. Unlike
this previous work, this paper presents an algorithm that han-
dles a content-based indexing method based on spatial relations
rather than positional information, defines a new genetic oper-
ator, uses heuristics about the relevance of constraints, and was
compared and evaluated by using databases that allow experi-
mental replication.

B. Genetic Algorithm (GA) for CSP

Genetic algorithms (GAs) have been successfully applied to
a number of optimization problems [3], [10], [36], [53], [63].
Some of these optimization problems can be formalized as CSP
problems [47], [51], that is, problems where individuals or the
population must satisfy some constraints. GAs, however, do
not handle constraints directly, because the genetic operators
crossover and mutation are “blind” to these constraints [10]. The
main issue in CSP problems that use GAs is, therefore, how to
incorporate constraints in an evolution cycle.

Handling binary constraints with GAs has several alternatives
[14]. An indirect strategy considers fitness functions that involve
values associated with constraint satisfactions. A common way
to define this kind of fitness function is the use of penalty func-
tions [17], [66]. Penalty functions are defined as the penalty
for violated constraints or as the penalty for wrongly instanti-
ated variables [70]. The indirect strategy is general and suitable
for handling constraints, since it reduces the CSP problem to
a simple optimization problem and may incorporate user pref-
erences by adding weights of relevance in the fitness function.
This strategy, however, hides the constraints within a global
fitness function without ensuring the satisfaction of any con-
straints. In addition, it requires the definition of weights for con-
straint violations. This definition may need substantial knowl-
edge about the specific problem and may change during the
problem solving process [12]. In order to overcome the prob-
lems of defining weights in the penalty function, some studies
have proposed to have algorithms that self adjust the weights
during the search process based on the number of times con-
straints are violated. Examples of methods with adaptive fitness
functions are: microgenetic iterative descent [18] and stepwise
adaptation of weights [29], [30]. These approaches to adaptive
fitness functions seem to have good performance [14]. They
have been used in applications where constraints are all equally
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important such that the runtime adjustment prevents that con-
straints could never be satisfied. In our domain problem, how-
ever, there exists evidence that constraints are not equally impor-
tant and that the constraints’ relevance may affect the perception
of the quality of solutions [8], [34].

A different strategy is a direct treatment of constraints in
GAs. This strategy adapts the traditional genetic operators
by including heuristics in the operators. Some adaptations to
classic operators may be: elimination of unfeasible candidates,
preservation of feasible candidates, repairing of unfeasible
candidates, and creation of new domain-dependent opera-
tors. Eiben et al. [27], [28] propose two basic operators with
heuristics: an asexual operator that transforms an individual
into a new one considering changes of up to one fourth of the
variables and a multiparent crossover operator that generates
one offspring using two or more parents. In [15], the two
basic operators were compared with the result that the asexual
operator outperforms the multiparent crossover operator. In
addition, different heuristics-based strategies were analyzed in
combination with experimental results that compare adaptive
fitness functions [14], [15], [30], [35]. The main conclusion
from the comparison studies is that effective methods based on
GAs for solving binary constraint problems should incorpo-
rate problem knowledge, either in the form of ad hoc genetic
operators and fitness functions or in the form of a local search
procedure.

There is a tradeoff when using special representations and
operators for GAs. On the one hand, this strategy loses the de-
sirable property of being applied to a number of applications;
on the other hand, it may be more efficient than general ap-
proaches. This is particularly true when domain knowledge may
improve the performance of the process and the quality of the
results. In our case, there are considerations that make this par-
ticular problem a suitable candidate for combining a direct and
an indirect strategy for treating constraint satisfaction. First, by
using a content measure it is possible to organize the informa-
tion in order to avoid the exhaustive search of instances in the
database that satisfy a particular constraint. Taking advantage of
an indexed spatial database is not an easy task for a traditional
GA [55], but indexing schemas exist and could be exploited to
improve quality and performance of results. Our content-based
indexing schema provides basis for defining heuristics in new
operators with the goal of making individuals better candidate
solutions in subsequent evolution cycles. Second, the query con-
straints may be sorted by relevance. For example, nondisjoint
relations are considered more important than disjoint relations
[34]. This relevance of spatial relations may provide a suitable
strategy for defining weights of violated constraints in the fit-
ness function.

IV. CONTENT DESCRIPTION AND SIMILARITY

OF SPATIAL CONFIGURATIONS

Fundamental to the process of searching spatial configura-
tions is the definition of a systematic way to compare these con-
figurations. This study is built upon a previous work for com-
paring spatial configurations [38], [39] that defines a content

Fig. 4. Metric differences of topological relations. (a) Degree of disjointness.
(b) Degree of overlapping.

Fig. 5. Primitives of the content measure.

measure of topological relations. Using a content measure al-
lows us to characterize spatial relations so that we can com-
pare them and organize them with an indexing schema. This is
particularly important for this type of problem, where queries
are composed of a variable number of objects and the database
cannot be organized by sets of configurations with fixed num-
bers of objects. In addition to being able to differentiate topolog-
ical relations, the defined content measure distinguishes among
same topological relations, but with different metric characteris-
tics. For example, the content measure recognizes different de-
grees of disjointness and overlapping (Fig. 4). Thus, this content
measure combines metric characteristics of MBR’s to obtain
unique and continuous values that identify topological relations.

The defined content-measure of topological relations con-
siders three basic primitives over objects’ MBRs: 1) areas of
individual MBRs and areas of intersection of pairs of MBRs;
2) diagonals of MBRs; and (3) minimum internal and external
distances between boundaries of MBRs (i.e., and

, respectively) (Fig. 5). The intuition behind this mea-
sure is that the distance between objects is a basic parameter
for the refinement of disjointness, while the area of the objects
is a basic parameter for the refinement of overlapping (1)

area area
area

distance
diagonal

where

distance
if
if

(1)

This content measure is independent of such continuous
transformations as scaling, transformation, and horizontal
or vertical flipping. The invariance under these continuous
transformations is consistent with the definition of topological
relations. The content measure is also asymmetric, so de-
scribing the arrangement of two objects needs two values, one
in each direction of the relation. Fig. 6 presents the range of
values in two-dimensional (2-D) that characterizes the topolog-
ical relations between MBRs. The boundaries of the regions in



256 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 3, JUNE 2005

Fig. 6. Values of the content measure that are classified into eight topological
relations between regions.

TABLE I
VALUES OF THE CONTENT MEASURE FOR THE DIFFERENT

TOPOLOGICAL RELATIONS BETWEEN REGIONS

this figure were determined by considering extreme cases and
then creating the corresponding parametric equations. As Fig. 6
reflects, all eight topological relations between two extended
objects, such as those defined by the nine-intersection model
[22] and the RCC model [65], can be defined in the 2-D space
that maps values of the content measure (Table I).

By having a quantitative description of topological relations
within a 2-D space, an indexing schema can be used to avoid the
exhaustive revision of the database, while searching a particular
topological relation. This work uses an R-Tree like structure that
organizes 2-D points in a balanced tree [69]. Unlike traditional
indexing schemas that organize objects positions, this schema
organizes spatial relations. Rectangular areas (i.e., intermediate
nodes in the tree) group points in the space of relations trying
to minimize the overlapping areas and building a hierarchical
and balanced data structure. A balanced tree is possible because
each area of a node includes a minimum and maximum number
of points or subareas. The tree-based indexing structure used
in this work has the following characteristics that are inherited
from the commonly used R-Tree structure [43] (Fig. 7).

• Each node in the tree, except the root, has between and
entries, where .

• For each entry in a nonleaf node ,
is the directory rectangle of a child node of with node
address .

• For each leaf entry , is the point of con-
tent-measure values that represent the relation between
objects with identifiers and .

• All leaves are at the same level.
• The root has at least two entries (unless it is a leaf).
Although the number of objects’ spatial relations in a data

set may be very large, the index does not need to store all rela-
tions between objects, but only the relations that are considered
relevant for a particular application. In this work, relations be-
tween close neighboring objects were stored, considering that
close neighboring objects are within a certain distance from
each other. The maximum distance between two objects is de-
termined as the average distance of neighboring objects. This
strategy follows the principle that nearby objects are more re-
lated than distant objects [84].

With the indexed space of topological relations, two pairs of
objects and are said to hold the same topological
relation if and .
The exact correspondence of relations, however, is unlikely be-
cause small changes in the size or shape of objects in the query
may affect the metric characteristics of the topological relations.
So, exact searching is relaxed by using a threshold value , such
that two topological relations are considered equivalent if their
values of the content measure satisfy

(2)

Studies have shown that there is an intrinsic relevance in the
relations of objects in a configuration [8], [11], [34]. This rel-
evance is known as the first law of geography “everything is
related to everything else, but nearby things are more related
than distant things” [84]. Consequently, nondisjoint relations
are more relevant, since they indicate physical connection be-
tween objects [8], [34]. Our content measure defines continuous
values, where large values indicate a larger degree of disjoint-
ness than small values. So, an intuitive relevance degree can be
defined by sorting the query constraints from nondisjoint to dis-
joint relations. In particular, constraints are sorted in increasing
order by the sum .

V. DESCRIPTION OF THE GA

The GA proposed in this paper is based on the results of pre-
vious studies that suggest the incorporation of problem knowl-
edge in the definition of ad hoc fitness functions and new ge-
netic operators [14], [15], [30], [35]. Following the ideas from
[14] and [15], this work defines a new genetic operator (i.e., an
asexual_reproduction operator) that combines probability with
local search in the exploitation of solutions. The GA uses a per-
formance criterion for evaluation and an initial population of
candidate solutions to search for a global optimum. The manipu-
lation of the population is given by a set of genetic operators that
work on the population’s chromosomes or individuals, which
are composed of a set of alleles (i.e., objects). At each genera-
tion or cycle of the GA, the new solutions arise from the appli-
cation of the genetic operators. The fitness function, quantified
by the objective function, represents the individuals’ ability to
survive. A summary of main features of the proposed GA based
on [14] is shown in Table II.
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Fig. 7. R-Tree of content-measure values with charge factorM equal to 5.

TABLE II
MAIN FEATURES OF THE PROPOSED GA

The following sections describe the population and individual
representation, the fitness function, and the genetic operators
of the algorithm that searches spatial configurations. This algo-
rithm will be called from now on genetic algorithm for searching
spatial configurations (GASCs).

A. Representation

In GASC, while objects are explicitly represented, relations
(i.e., constraints) are determined through the search process.
Spatial objects are the basic components of a population asso-
ciated with alleles of the population’s individuals. So, an indi-
vidual is a candidate configuration composed of a set of ob-
jects (Fig. 8). In this representation, spatial objects possess a
unique identification, a semantic classification (e.g., an object
is a building or a road), and a MBR.

Given a population with a set of individuals, which are
composed of alleles obtained from a set (i.e., the database),
the formal description of the system is

where

(3)

Fig. 8. Spatial objects as alleles of the population’s individuals.

Like configurations in the database, a query has the same
structure as an individual of the population

(4)

Relations (i.e., constraints) are defined over pairs of objects
(i.e., alleles). Queries are preprocessed such that a relation
is less disjoint than relation . Thus, given the following
definition of a constraint and its converse constraint :

(5)

the relations and in query satisfy (6), where is
the value of the content measure

(6)

B. Fitness Function

The fitness function combines the satisfaction of constraints
by handling the sum of satisfied constraints weighted by the
relevance of these constraints. For a query with objects and

constraints, the fitness function is defined according to (7),
where was set to 0.01

Fitness satisfy (7)

where the satisfy function is shown in the first equation at the
bottom of the next page.

The goal of this fitness function is to obtain configurations
whose objects’ topological relations are equivalent to the re-
lations between objects in a query. In order to refine the simi-
larity ranking of candidate configurations, a second function dif-
ferentiates configurations that have the same fitness value, that
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is, the same weighted sum of satisfied constraints. This second
function measures the degree to which topological relations are
equivalent. This is determined by the distance in the space of
relations between content-measure values of pairs of objects in
the database and pairs of objects in the query (8), as shown at
the bottom of the page.

C. Algorithms and Operators

The operators in a classic GA allow us to start with an initial
population, which is usually randomly created, and to evolve
and improve the initial population by reproduction, crossover,
and mutation [40]. There exist multiple alternatives of imple-
mentation for genetic operators. These alternatives depend on
the experience of previous studies and the specific domain
knowledge that may adapt classic operators to obtain precise
and efficient results. Before designing the GA proposed in this
paper, a classic GA was implemented and evaluated with large
databases. This classic GA generated solutions that were very
dissimilar to the desired answers. These results and the results
previously obtained by Papadias [55] motivate the definition of
a specific GA whose description follows.

The general structure of GASC is shown in Algorithm 1,
where the main difference with respect to a classic GA is the
substitution of the crossover operator by a new operator that we
call asexual_reproduction, which has been specifically designed
for this application to exploit the advantages of an indexed data-
base of spatial relations. The criteria to stop the evolutionary
cycle are to reach the maximum number of generations (i.e.,
maximum_generation) or to have an individual in the population
that is an optimal solution (i.e., a solution that has all constraints
satisfied).

Algorithm 1:
// is the number of generations

;
;

);
while ( )

or (not ) do [
;

;
;

;
;

;]

The first section of the algorithm corresponds to the initial-
ization of variables, which includes the following.

• Population_initialization, where a random population is
created. The initial population was randomly created be-
cause the heuristics that could be used in the initialization
of the population are used in the reproduction operator,
and we found no justification for making the effort of cre-
ating an initial population with heuristics that are also ap-
plied in the reproduction operator.

• Population_evaluation, where the fitness of each indi-
vidual is calculated with respect to a query.

The next section in the algorithm performs the evolution cycle
with the following operators.

• Selection: This operator selects individuals from for
reproduction, which are copied to an intermediate popu-
lation of the same size than . In this selection,
an individual with better probability of surviving may be
selected more than once. This probability of surviving is
determined based on the individuals’ fitness. Among the
various type of selection (e.g., rolulette wheel, stochastic
universal sampling, and linear ranking, tournament) [52],
this work uses linear ranking with bias 1.5. This strategy
ranks the population by individuals’ fitness (i.e., 1 to the
worst, 2 to the second worst, and so on) and assigns a
proportional probability of selection determined by this
ranking and a factor defined in terms of the bias [41] (Al-
gorithm 2). Rank-based fitness assignment overcomes the
scaling problems of the proportional fitness assignment.
The reproductive range is limited so that no individuals
generate an excessive number of offspring. Ranking intro-
duces an uniform scaling across the population and pro-
vides a simple and effective way of controlling selection
pressure [5].

Algorithm 2:
// is the number of individuals in the population
// is the intermediate population
// is a function that returns a random
number between 0 and

sort by fitness in increasing order;
;

;
;

for each do [

satisfy
if
otherwise

(8)



RODRÍGUEZ AND JARUR: GENETIC ALGORITHM FOR SEARCHING SPATIAL CONFIGURATIONS 259

while and do [
insert into ;

;
]];

• Asexual_reproduction: This new operator implements a
direct treatment of constraints [16] (Algorithm 3). The
goal of this operator is that the reproduction of individ-
uals should generate new individuals with one or more
constraints that are satisfied. In finding alleles that satisfy
constraints, this operator uses the indexed database. The
operator is applied over the individuals that were selected.
It selects, within an individual, the constraints defined by
the pairs of objects with the worst impact on the fitness.
The impact of individuals on the fitness is determined by
the weighted sum of constraints violated per individual,
where for sorted constraints, the violation of constraint

is given weight . Once a pair of objects is
selected, and its corresponding constraint is determined,
this pair of objects is replaced by using a random pair of
objects that is chosen from all possible pairs that satisfy
the constraint. So, each time a pair of objects is replaced,
the algorithm searches in the index schema for pairs of
objects that satisfy the corresponding constraint.

Algorithm 3:
// is an individual from a selected population
// is the allele located at in an individual
// , where are alleles’

locations in solutions and are the
alleles’ numbers of violated constraints

// is the constraint that relates a
variables with in query

// is the constraint that relates object
instances with in individual

// sorts based on the
decreasing numbers of

// return a list of
instances that satisfy constraint between
variables

// are object instances that are randomly selected
from a list of pairs of objects

// replaces alleles
and in individual by instances

and , respectively
for each do [

for to do
; ;

for each do
if not , then

; ;
;

TABLE III
SELECTING ALLELES IN THE ASEXUAL_REPRODUCTION OPERATOR

;]

As an example of how this algorithm works, consider
the query and the candidate solution in Table III. In this
example, the query is composed of three variables
and the candidate solution is composed of three ob-
jects . A query with three variables is characterized
by three constraints: , , and

. By (7) between relations in the query and
corresponding relations in the candidate solution, con-
straints and are not satisfied. Counting the number
of violated constraints where an object participates, a rank
of objects in decreasing order is , , and . Thus,
the first two objects in this ranking (i.e., and )
are the objects to be replaced, which are replaced by ran-
domly selecting objects among candidate pairs of objects
that satisfy the constraints .

• Mutation: This operator plays a secondary role that keeps
diversity in the search domain. The operator is applied
with a low probability equal to 1 divided by the length
of the individual, selecting random individuals and ran-
domly changing one of their alleles. This is the classic
implementation of mutation [40].

• Substitution: The substitution consists in replacing indi-
viduals of a population by the new individuals created via
asexual reproduction. The criteria used in this implemen-
tation was elitism [52], that is, forcing the preservation
of the best individuals by making new individuals replace
the worst individuals in the population.

At each generation, the computational cost of GASC is
, which is affected by the number of

individuals selected from the population ( ), the number of
alleles in individuals ( ), and the efficient cost of searching
in the R-Tree like structure ( ), with relations and
average degree . There have been some attempts to determine
the efficient cost of searching in a R-Tree structure in terms
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TABLE IV
NUMBER OF OBJECTS IN DATABASES

TABLE V
OCURRENCE NUMBER OF TOPOLOGICAL RELATIONS IN DATABASES

of nodes access when answering a selection query [32], [82],
[83]. These efficient-cost models are defined by using the
number and density of data rectangles in the data set. In this
work, however, the index structure organizes points rather than
areas, and the density of the data is not always homogenously
distributed so that the relation space does not satisfy the general
assumptions made in the cost-efficiency models of an R-Tree
structure.

VI. EXPERIMENTAL RESULTS

A. Data

Two databases were used for the experiments (Table IV):
Utility and Cell_box. One of them is an available database that
is used as experimental data in evaluations of spatial indexing
schemas [81]. It represents a real geographic database with a
large collection of spatial objects whose geometry are defined
by polylines. Real geographic databases usually contain more
disjoint than nondisjoint relations because they store objects that
are distributed over a large geographic area. Although the model
for comparing configurations considers disjoint relations less
important than nondisjoint relations, the content measure used
in this model is well suitable for characterizing and, therefore,
for comparing disjoint relations.

In order to have a comprehensive set of data, a synthetic data-
base (Cell_box) was created with all possible square cells that fit
in a 9 9 box, considering cells whose edge lengths vary from
1 to 9. This last database contains a homogenous distribution
of objects over the space where it is possible to realize com-
plex topological configurations (e.g., a configuration with five
objects, where each object is inside of another object).

The two databases differ in the number and frequency of
occurrences of topological relations (Table V). Table V shows
the same number of contains and inside relations as well as the
same number of covers and covered_by relations, since these
relations are converse relations. In order to reduce the large
amount of disjoint relations in the real database, the number
of disjoint relations was reduced by considering a database
preprocessing that eliminates disjoint relations between objects

Fig. 9. Distribution of content-measure values for database Utility.

Fig. 10. Distribution of content-measure values for database Cell_box.

whose separation is larger than a given normalized distance.
Thus, the system handles only relations between an object and
its neighbors whose separation is less than or equal to times
the object’s diagonal. The value of was set to 4.0 for the real
database. This setting was obtained from analyzing the spatial
distribution of neighboring objects in the database and consid-
ering a distance with the greatest concentration of neighboring
objects. For the database Cell_box, the whole set of relations
was used, since objects are distributed homogeneously over
the space and there is not a clear distance after which the
number of neighbors decreases.

The indexing structure used for organizing the content-mea-
sure values is an R-Tree with charge factor equal to 500 (i.e.,
a maximum number of entries in a node equal to 500). Unable
to obtain an analytical computational cost of the R-Tree struc-
ture, we analyzed experimentally the number of access to the
R-Tree for 1000 different searches created randomly in each
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TABLE VI
QUERIES FOR PARAMETER SETTING

database. In all searches, solutions were pairs of objects that
satisfied a given topological relations, independently of the po-
sitions of objects in the space. The index of database Utility has
1341 nodes, whereas the index of database Cell_box has 192
nodes. Searches in the database Utility visited, on average, 53
nodes (between 1 and 219 nodes), with an average number of
solutions of 1210 pairs of objects (between 1 and 6539 pairs of
objects). Searches in the database Cell_box visited, on average,
26 nodes (between 1 and 60 nodes), with an average number of
solutions of 1532 pairs of objects (between 4 and 13 200 pairs
of objects).

Using the content measure, further refinements of topolog-
ical relations can be made. The distributions of values of content
measures for each database are seen in Figs. 9 and 10. These dis-
tributions become relevant when analyzing the computational
cost of finding or combining candidate pairs of objects that sat-
isfy a given spatial constraint. Relations in the database Utility
are distributed over the whole domain of possible values and,
therefore, its graph looks similar to the general graph that de-
scribes the value domain of the content measure (Fig. 6). In this
graph, however, portion of the space has been eliminated due to
the threshold used for the disjoint relations. The distribution of
values of the content measure for database Cell_box indicates
that, within a same type of topological relation, many objects
have the same size and shape independently of scale and posi-
tion, and therefore, the same value of the content measure. Con-
sequently, although database Cell_box consists of objects well

distributed over the whole space of 9 9 cells, these objects are
of regular shape and size such that points in the relation space
create clusters of topological relations.

B. Parameter Settings

There are two major forms of setting parameters values of
a GA: parameter tunning and parameter control [26]. Param-
eter tunning consists in determining good parameter values be-
fore the run of the algorithm. Parameter control, in contrast,
changes parameters during the run by using deterministic, adap-
tive, or self-adaptive changes. In the proposed algorithm, pos-
sible parameters to be set are the probability of reproduction
by the asexual_reproduction operator, the probability of muta-
tion, the number of individuals in the initial population, and the
number of maximum generations. Although a parameter con-
trol strategy has advantages over a parameter tunning strategy
with respect to the dependency of parameters and time effort of
parameter setting, this work uses parameter tunning for the fol-
lowing reasons.

• The asexual_reproduction operator differs from a
crossover operator so, available strategies that have
addressed parameter control for the determination of the
probability of reproduction cannot be directly applied. In
the proposed algorithm, an adaptive strategy for deter-
mining the probability of allele exchange is implicit in
the new operator. The allele’s probability for exchange
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Fig. 11. Variations of best results with respect to 20 executions for different settings: settings 1–10: 50 individuals with number of generations that varies from
100 to 1000, settings 11–20: 100 individuals with number of generations that varies from 100 to 1000, settings 21–30: 150 individuals with number of generations
that varies from 100 to 1000, settings 31–40: 200 individuals with number of generations that varies from 100 to 1000, settings 41–50: 250 individuals with number
of generations that varies from 100 to 1000, and settings 51–60: 300 individuals with number of generations that varies from 100 to 1000.

Fig. 12. Average fitness values with variations in number of individuals and number of generations for probability of asexual reproduction equal to 0.6.

depends on the number of violated constraints where the
allele participates. This number of violations changes
during the run and will make the probability of an allele
exchange to increase as the allele’s contribution to the fit-
ness of the corresponding chromosome (i.e., individual)
decreases.

• There exist previous studies that have addressed the tun-
ning of the probability of mutation . The formula

adopted in this work, with being the length of the
bitstring, outperforms other fixed values of [77].

• The number of individuals, i.e., the size of the popula-
tion, was fixed for the whole run of the algorithm in order
to avoid combinations with other forms of control of the
asexual_reproduction operator that could trigger problems
related to the transitory behavior of the GASC. Taking the
common strategy of adaptive population size based on the
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Fig. 13. Average fitness values with variations in number of individuals and number of generations for probability of asexual reproduction equal to 0.8.

Fig. 14. Comparing average number of constraint evaluations for probability of asexual reproduction equal to 0.6 and 0.8.

merit of fitness [26], which is also based on some kind of
parameter control (i.e., the allele exchange probability of
the asexual_reproduction operator), a poor performance
of the reproduction operator would have difficulties for
recovering as the size of the population shrinks.

• The GASC uses two stop strategies: 1) it stops the algo-
rithm when the optimal solutions was found or 2) it stops
when the number of generations reaches a maximum. To
the best of our knowledge, no study has set the maximum
number of generations by a parameter control strategy.

The opportunity to work with databases of different number
of objects allows us to obtain conclusions concerning the ef-
fect of the size and complexity of the databases on the setting
of parameters of GASC. The goal is to keep a balance between
minimizing the computational cost and obtaining good fitness
values. To do so, we ran 20 times GASC with different set-
tings and randomly created queries with five and ten objects
(Table VI). The criterion used in selecting these queries was to
have examples of contrasting queries in terms of the occurrence
number of topological relations in the databases. All queries had
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an exact matching in a database, that is, they exist in one of the
databases. The settings consider a range in the number of indi-
viduals from 50 to 300 and, in the number of maximum gener-
ations, from 100 to 1000. The maximum of 300 individuals and
1000 generations was defined in order to keep the execution time
within a time frame not longer than 30 min. In addition, two dif-
ferent probabilities of applying asexual reproduction were ana-
lyzed, probability equal to 0.6 and 0.8. The experiment uses a
computer with operative system Linux, a processor Pentium IV
of 2.4 MHz, and 1 GB of RAM.

The study of results includes three analyses: 1) variance of
results that were obtained in the twenty runs of GASC; 2) fit-
ness values and computational cost depending on the probability
of asexual reproduction, number of generations, and number
of individuals; and 3) sensibility of the computational cost by
changing the number of individuals and number of generations
given a selected probability of asexual reproduction.

GASC is a stochastic algorithm, because, given the same
input, different outputs are possible. To obtain a tendency of
results, GASC searches twenty times for solutions of a query,
and the best solutions are always selected. As it was indicated
above, the goal of the setting is to find good results at a minimal
computational cost. A way to decrease this computational cost
is to reduce the number of times that GASC is executed for
each query. Then, this analysis checks the best fitness values for
groups of results after running once, 5 times, 10 times, 15 times,
and 20 times GASC. Fig. 11 shows results for different number
of executions that presented the major variations among the
different queries. In this graph, variations are normalized values
between 0 and 100 that represent the differences between the
best results of 20 executions with respect to the best results of
1, 5, 10, and 15 executions. As the number of executions, the
number of individuals, and the number generations increase,
less variations of the best results occur. For the results shown
in Fig. 11, the average difference with respect to the results
obtained with twenty executions was 0.55, 0.16, 0.06, 0.04,
with standard deviations of 0.47, 0.35, 0.23, and 0.20 for one,
five, ten, and fifteen executions of CSGA, respectively. For the
other queries, results show minimum variations among number
of executions.

Figs. 12 and 13 show the average fitness values for settings
that vary in the number of generations, number of individuals
and probability of asexual reproduction. This analysis considers
only the best results among the first five executions of the al-
gorithm for different queries. These values are normalized by
the number of constraints satisfied such that 100% means that
all constraints where satisfied. A clear tendency is that as the
number of individuals and number of generations increase, the
fitness improves. Considering results for each query separately,
when GASC converges to an optimal solution (i.e., all con-
strained are satisfied and the fitness is equal to 100%), this fit-
ness is obtained for subsequent next increasing values of indi-
viduals and number of generations. These figures do not indicate
major differences in the fitness values when using a probability
of asexual reproduction equal to 0.6 or 0.8. Fig. 14 shows the av-
erage computational cost when using a probability of asexual re-
production equal to 0.6 or 0.8. With respect to the computational
cost, a probability of asexual reproduction equal to 0.6 outper-

Fig. 15. Sensitivity of the computational cost in terms of number of individuals
and number of generations.

forms the computational cost of using a probability of asexual
reproduction equal to 0.8. Based on the previous results, the last
analysis assumes a probability of reproduction equal to 0.6 and
five executions of the algorithms.

An example of the analysis of sensitivity of the computa-
tional cost based on number of individuals and number of gen-
erations is shown in Fig. 15. This figure illustrates results of
applying GASC in the search of solutions for a query with five
object in the database Utility. In this figure, cost was measured in
terms of the normalized number of constraint evaluations (i.e.,
values between 0% and 100% of the computational cost). As
Fig. 15 shows, increasing the number of individuals has a worse
impact on the computation cost than increasing the number of
generations.

Based on the results of the experiments with different set-
tings, the number of individuals and number of generations was
set to 100 and 200, respectively, with five executions of the al-
gorithm, and probability of reproduction of individuals equal to
0.6. The criteria used for making the decision were to minimize
the number of individuals and generations while keeping the fit-
ness value about 75% and running time not superior to 10 min.

C. Evaluation of the GA

The evaluation of GASC considers comparisons of results
for 60 random queries of five and ten objects (i.e., 10 and
45 constraints, respectively) per database. The comparison
was made with respect to two classes of algorithms that
have been previously used for similar spatial configuration
retrieval: 1) a deterministic algorithm (DA) based on a forward
checking strategy [58] and 2) a local search algorithm (LS)
based on a hill_climbing strategy [2], [55]. An additional
reason to compare GASC with a hill_climbing algorithm was
to show that, despite the resemblance of a local search with
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Fig. 16. Fitness values for queries with five objects in database Utility.

Fig. 17. Fitness values for queries with ten objects in database Utility.

the asexual_reproduction operator, GASC was not a hidden
hill_climbing algorithm.

The forward checking strategy of DA takes the constraints one
by one and searches for pairs of objects that satisfy this con-
straint [69]. It then performs a join operation [42] to combine
the results of the search of objects that satisfy individual con-
straints. The algorithm skips constraints that cannot be satisfied
by any of the candidate solutions, but it forces that at least one of
the constraints must be satisfied. DA uses the content-indexing
schema so that the instantiation of variable are taken from a
compatible domain of variables. Taking into consideration the

indexing schema and that all variables in the query are interre-
lated, no other strategies, such as conflict-directed backjumping
[85], that enhance the classical forward checking algorithm was
applicable. The complexity of this algorithm is NP (i.e., nonde-
terministic polynomial time), since it depends on the combina-
tion of an underdetermined number of pairs of objects that are
retrieved from the index structure when searching for solutions
of individual constraints.

The hill climbing strategy of LS uses an iterative improve-
ment technique. It starts with a single solution that is created
with a random assignment of variables. At each iteration, the
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Fig. 18. Fitness values for queries with five objects in database Cell_box.

Fig. 19. Fitness values for queries with ten objects in database Cell_box.

solution is modified by the reinstantiation of variables that in-
crease the similarity of the solution with respect to the query.
This reinstantiation of variables takes objects that violate the
largest number of constraints and replaces them with random
selected objects from the domain of variables that satisfy the
corresponding constraint. The reinstantiation is similar to the
asexual_reproduction operator of GASC; however, this rein-
stantiation in LS moves always in the direction of increasing
similarity. At each iteration, the computational cost of LS is

, with being the computational cost of
finding the objects that violate the most constraints among the
objects in the solution and ( ) being the efficient cost of

searching in the R-Tree with relations and average degree .
This is the same computational cost of the asexual_reproduction
operator of the GASC in one life cycle of a single population’s
individual. The algorithm finishes when it finds an optimal so-
lution or exceeds a maximum number of constraint evaluations,
which in this case was set to 1 300 000 evaluations (the double
of the average number of constraint evaluations used by the
GASC).

The graphs in Figs. 16–19 show fitness values of results for
queries with five and ten objects made to the databases Utility
and Cell_box with the three algorithms. DA was unable to find
solutions in cases where the combinational join process exceeds
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Fig. 20. Number of constraint evaluations for queries with five objects in database Utility.

TABLE VII
PERCENTAGES OF OPTIMAL SOLUTIONS OF EACH ALGORITHM

the computational capability (i.e., over 4 hours of executions or
the process runs out of memory). In all other cases, DA finds
the optimal solution. LS was always unable to find optimal so-
lutions, and GASC finds in most cases optimal solutions. The
percentages of optimal solutions that were found for each algo-
rithm in each database for queries with five and ten objects are
shown in Table VII. When GASC did not find optimal solutions,
it finds solutions with average fitness of 45% and 10%, and 98%
and 91% for queries with five and ten objects in database Utility,
and queries with five and ten objects in database Cell_box, re-
spectively. In cases when GASC did not find optimal solutions,
the algorithm did not find candidate solutions in the database
Utility that were similar to the queries. In the database Cell_box,
in contrast, there exist candidate solutions that were similar, but
not necessarily equivalent, to the queries.

Computational cost was measured in terms of the number of
constraints violated. Figs. 20 and 21 show number of constraint
evaluations in the search for queries with five objects of DA and
GASC in databases Utility and Cell_box. The number of eval-
uations for LS was always the same and was set to double the
average number of constraint evaluations needed by GASC. We
omitted the constraint evaluations for queries with ten objects,

since there were no enough solutions of DA to make an ade-
quate comparison with GASC. In cases with five objects and
when DA finds solutions, GASC uses less number of constraint
evaluations in the 67% and 87% of queries in databases Utility
and Cell_box, respectively. The average number of constraints
evaluations of GASC for queries with five objects to databases
Utility and Cell_box was 380 583 and 415 641, respectively.

The components of computational cost differ between DA
and GASC. While DA is affected by the combinatorial process
of joining partial solutions, GASC is strongly affected by the
search in the index structure. The average number of visited
nodes in the R-Tree by GASC was 2 649 294 for database
Utility and 565 332 for database Cell_box, whereas the average
number of visited nodes in the R-Tree by DA was 8674 for
database Utility and 2208 for database Cell_box. The com-
binatorial process in DA is an intrinsic part of the way the
algorithm works. The search in the index structure, in contrast,
is an independent process of GASC that could be optimized by
selecting another index schema that could better adjust to the
distribution of points in the relation space. Moreover, being the
reproduction of individuals in the population independent of
each other, the reproduction in the evolutionary cycle could be
a parallel process, which was left out of the scope of this paper.

Although both databases differ drastically in size, the compu-
tational cost in terms of constraint evaluations did not reflect sig-
nificant differences between searching with GASC in the data-
base Utility and Cell_box. This indicates that it is not only the
volume of data what matters, but the distribution of occurrences
of topological relations in the database. Cell_box is a small data-
base with topological relations that cannot be further differenti-
ated by metric refinements. Thus, the index structure has many
overlapping points in the relation space and, therefore, many oc-
currences of a particular topological relation. Consequently, the
computational cost used for retrieving occurrences of topolog-



268 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 3, JUNE 2005

Fig. 21. Number of constraint evaluations for queries with five objects in database Cell_box.

ical relations is proportional to the size of the index schema and
to the number of occurrences that are retrieved (i.e., density of
points in the relation space).

VII. CONCLUSION

This work has presented a GA for searching spatial configura-
tion. This algorithm is based on an asexual_reproduction oper-
ator that replaces the classical crossover operator. The new op-
erator treats constraint satisfaction between spatial objects and
uses a content-based indexed database of objects spatial inter-
relations. Thus, the GA combines randomness with a controlled
search domain. The index schema controls the search domain,
since only objects that satisfy query constraints are retrieved.
As main conclusion, the GA is a good alternative to solve this
type of searching problem when the complexity of the database
makes a deterministic approach intractable. In such cases, the
computational cost of the GA is always bounded and affected
by the number of individuals and generations, and by the time
of searching in the indexing structure of the database.

The experiment for setting the parameters of the algorithm in-
dicates that increasing the number of individuals has a stronger
impact on the computational cost than increasing the number of
generations. The algorithm converges to solutions as the number
of individuals and number of generations increase. Increasing
the number of constraints affects the performance of the algo-
rithm; however, the effect of the number of constraints on the
performance of the algorithm can also be handled by the number
of constraints that are satisfied per individual in the evolutionary
cycle.

The GA always outperforms the hill_climbing algorithm, and
in most cases, it also outperforms the deterministic algorithm.
The GA is able to find solutions when the deterministic strategy

exceeds the computational capability, given good results in over
85% of the cases. The deterministic algorithm, on the other
hand, always finds optimal solutions. The main issue is to char-
acterize the complexity of the database to make a correlation
between this characterization and the performance of the ge-
netic and deterministic algorithms. The deterministic strategy is
less efficient when a topological relation, with its corresponding
metric refinement, has many occurrences in the database. In
such case, the combinatorial process of joining constraint sat-
isfactions may become intractable.

In terms of computational cost measured by the number of
constraints, the GA needs on average less number of constraint
evaluations than the deterministic strategy. On the other hand,
the GA requires a large number of searches in the indexing
structure. We visualize some strategies to improve the computa-
tional cost of the GA. The first strategy is to optimize the search
process in the index structure. This optimization should consider
a structure that handles points that are not homogenously dis-
tributed over the space of relations. A second strategy is to im-
plement the GA on a distributed network such that reproduction
of individuals becomes a parallel process. Finally, strategies for
preprocessing the query that reduce the number of constraints
[68] may also be considered to simplify user queries.
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