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Progressive Alignment Method Using Genetic
Algorithm for Multiple Sequence Alignment
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Abstract—In this paper, we have proposed a progressive
alignment method using a genetic algorithm for multiple se-
quence alignment, named GAPAM. We have introduced two
new mechanisms to generate an initial population: the first
mechanism is to generate guide trees with randomly selected
sequences and the second is shuffling the sequences inside such
trees. Two different genetic operators have been implemented
with GAPAM. To test the performance of our algorithm, we
have compared it with existing well-known methods, such as
PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA,
MULTALIGN, and PILEUPS, and also other methods, based
on genetic algorithms (GA), such as SAGA, MSA-GA, and
RBT-GA, by solving a number of benchmark datasets from
BAliBase 2.0. To make a fairer comparison with the GA based
algorithms such as MSA-GA and RBT-GA, we have performed
further experiments covering all the datasets reported by those
two algorithms. The experimental results showed that GAPAM
achieved better solutions than the others for most of the cases,
and also revealed that the overall performance of the proposed
method outperformed the other methods mentioned above.

Index Terms—Dynamic programming (DP), genetic algorithm
(GA), guide tree, multiple sequence alignment (MSA), progressive
alignment.

I. INTRODUCTION

ULTIPLE sequence alignment (MSA), the simultane-

ous alignment among three or more nucleotide or
amino acid sequences, is one of the most essential tools
in molecular biology. Sequence alignments are used to help
demonstrate homology between new and existing sequences,
to suggest primers for polymerase chain reaction, and to
predict the secondary or tertiary structure of RNA and proteins
[1], [2]. Therefore, the development of efficient and accurate
automatic methods for multiple sequence alignments is a very
important research topic.

Sequence alignment is the arrangement of two or more se-
quences of “residues” that maximizes the similarities between
them. In order for a multiple alignment to be meaningful in this
context, all sequences in the multiple alignment must have a
common origin. The goal of multiple sequence alignment is to
align sequences according to their evolutionary relationships.
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MSA is important because it reconstructs phylogenetic trees,
which in turn predict the function of an unknown protein
by aligning its sequences with some other known functions.
The various match, mismatch, and indel (“-”) events then
represent possible reconstructions of the evolution of those
related sequences. If a sequence alignment occurs between
two sequences, then it is called a pairwise alignment [3], [4],
and the main goal is to find the similar or closely related parts
between two sequences. If the alignment involves more than
two sequences, then it is called a multiple sequence alignment
and the main goal is to find the consensus parts among the
sequences. For small lengths and small numbers of sequences,
it is possible to create the alignment manually. However,
efficient algorithms to align such sequences are essential for
alignments with more than eight sequences [5].

MSA problems are solved using several different methods,
such as classical, progressive, and iterative algorithms. These
algorithms follow either global or local alignment strate-
gies. In global alignments, sequences are aligned over their
whole length. By contrast, local alignments identify regions
of similarity within a sub sequence [6]. Local alignments are
often preferable, but can be more difficult because of the
additional challenge of identifying the regions of similarity. A
general global alignment technique is the Needleman—Wunsch
algorithm [3], which is based on dynamic programming. The
Smith—Waterman algorithm [4] is a general local alignment
method which is also based on dynamic programming. The
dynamic programming (DP) approach [3] is good at finding the
optimal alignment for two sequences. However, the complexity
of this method grows significantly for three or more sequences
[7]. Note that MSA is a combinatorial problem (NP-hard)
where the computational effort becomes prohibitive with a
large number of sequences [8]. The progressive alignment al-
gorithm (tree-base algorithm), proposed by Feng and Doolittle
[9], iteratively utilizes the method of Needleman and Wunsch
[5] in order to obtain an MSA and to construct an evolu-
tionary tree to depict the relationship between sequences. The
progressive alignment algorithms align sequences according
to the branching order of a guide tree. The difficulty with
these methods is that they usually converge to local optima
[5]. To overcome such a limitation, it is recommended to use
an iterative or stochastic procedure [10]-[12].

Some of the proposed methods are based on local alignment.
PIMA [13] uses local dynamic programming to align only the
most conserved motifs. DIALIGN [14] uses a local alignment
approach that constructs multiple sequence alignment based
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on a segment to segment comparison, rather than the residue
to residue comparison. This method is successful in highly
conserved flanking core blocks, but is unreliable outside the
conserved motifs [6]. T-Coffee [15] is a sensitive progressive
alignment algorithm which combines information from global
and local alignments in order to provide multiple sequence
alignment. This method is fast but there is a possibility for
it to become trapped at a local minima. There are also algo-
rithms that are designed for sequence alignments of very large
genomic regions up to mega bases long, such as AVID [16],
BLASTZ [17], and MUMmer [18]. These methods effectively
align closely related organisms, but have not been tested in
alignments between more distant relatives [19].

A good number of global alignment algorithms based on the
progressive alignment method have been proposed to solve
MSA problems such as MULTALIGN [20], MULTAL [21],
PILEUP [22], and CLUSTALX [23]. MULTAL uses a sequen-
tial branching method to align the two closest sequences first,
while then subsequently aligning the next closest sequences,
and so on. MULTALIGN and PILEUP make the final align-
ments from the guide tree (the progressive alignment), which
is constructed using unweighted pair group method using
arithmetic averages (UPGMA) [24]. CLUSTAL W [5], based
on a progressive approach, is a global method for multiple
sequence alignments, which improves the local optimality
issue of the progressive approach. The CLUSTAL W builds up
the final alignments from a guide tree, which is calculated by
a neighbor-joining (NJ) algorithm [25]. CLUSTAL W has one
of the most sophisticated scoring systems, namely weighted
sum of pair score, which considers sequence weighting and
position dependent gap penalties. Although this approach is
successful in a wide variety of cases, this method suffers
from its greediness [15]. LAGAN and MLAGAN [19] are
global alignment methods for large-scale pairwise and multiple
genomic alignments. These methods are useful for both closely
and distantly related organisms.

To overcome the limitations of the progressive alignment
methods, researchers use either iterative or stochastic ap-
proaches. The iterative approach starts with an initial solution
and then the current solution is improved using iterative steps.
MUSCLE [26] solves MSA based on a progressive and itera-
tive algorithm. It has three stages: draft progressive, improve
progressive, and refinement. In each stage, a multiple sequence
alignment is generated. Similarly MAFFT [27] is also based
on a progressive and iterative algorithm. It uses a fast Fourier
transform to identify homologous regions. ProbCons [28] is
a probabilistic and consistency based algorithm. It computes
posterior-probability matrices and expected accuracies for each
pairwise comparison. Probcons achieves more accurate results
than MUSCLE and MAFFT, but is slower than these algo-
rithms [28]. PRRP [29] is another global alignment program
which is based on a progressive and iterative approach. This
approach is robust, but it is not guaranteed to find optimum
solutions [15].

There are some iterative and stochastic approaches for MSA
(for example, simulated annealing [30], [31] and evolutionary
computation [32]-[36]). HMMT [37], based on a simulated
annealing method, maximizes the probability for sequence

alignment where the solution could become trapped in a local
optima [38]. Evolutionary algorithms (EAs) are population
based stochastic global search algorithms. When using EAs for
MSA, an initial seed is generated by a progressive alignment
method, and then the steps of an EA are applied to improve the
similarities among the sequences. For example, MSA-EA [39]
is used to improve the solution of the Clustal V [40] algorithm
by initially generating one seed with Clustal V. This method
works well for a large number of fully matched blocks, but
performs poorly with only a few fully matched blocks [38].
There are some other genetic algorithm (GA) based methods
for MSA, such as SAGA [36], GA-ACO [38], MSA-EC [41],
MSA-GA [42], RBT-GA [43], and others.

In SAGA, the initial generation is generated randomly. In
this algorithm, 22 different operators are used to gradually im-
prove the fitness of the MSA. These operators are dynamically
scheduled during the evolution process. The time complexity
of SAGA is large, mainly due to the time required by the
repeated use of the fitness function [41]. Shyu er al. [41]
proposed two approaches for inferring MSA using GAs. In the
first approach, GA was used to evolve an optimal guide tree.
In this algorithm, the initial population of trees is generated
randomly. In its crossover process, one portion of a binary
tree (from the first parent) is connected to another portion
of another binary tree (second parent) to generate a child
binary tree. In its mutation process, some nodes are selected
from a child tree and their upper edge is then connected
to a randomly selected viable node. Shyu’s second approach
facilitates the optimization of a consensus sequence with a
GA by using a vertically scalable encoding scheme, in which
the number of iterations needed to find an optimal solution is
approximately the same regardless of the number of sequences
being aligned. Another algorithm, GA-ACO [38], combines
ant colony optimization with GA to overcome the problem
of becoming trapped in local optima. First, GA is run with
a randomly generated initial population. Finally, ant colony
optimization (ACO) was applied on the best alignment of
the GA approach. MSA-GA is a simple GA based method
with a different scoring function. To test this algorithm, the
authors performed two sets of five runs for each of 28
test cases from the BAliBase 2.0 [44] dataset. In the first
set, the initial population of this algorithm was generated
only with pairwise alignments, but in the second set they
consider alignments from both CLUSTAL W and the pairwise
alignments as initial populations. RBT-GA is also a GA based
method, combined with the rubber band technique (RBT), to
find optimal protein sequence alignments [45], [46]. RBT is an
iterative algorithm for sequence alignment using a DP table.
The authors [43] solved 34 problems from reference sets 2 and
3 of the benchmark BAlibase 2.0 dataset. The experimental
results showed that the overall performance of RBT-GA was
better than the methods compared in that paper. In closing this
discussion of GA for MSA, it should also be mentioned that
to enhance the performance of GAs in solving MSA problems
the local search methods are sometimes integrated with GAs
[47]-[51].

There is no well-accepted theoretical model for sequence
analysis [2]. An algorithm is accepted as a good method for
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sequence alignment if it produces better fitness scores with
respect to the benchmark datasets. From our literature review,
it is observed that global alignment algorithms perform better
than local alignment algorithms, and iterative and stochas-
tic algorithms perform better than progressive approaches.
Although the progressive alignment approaches are fast and
deterministic, the main problem is that if any mistake is made
early in the alignment process, then it cannot be corrected later.
This is not an issue with iterative approaches. Also, most of
these methods are stochastic, they are slower and the obtained
results may vary between runs. However, the iterative methods
are favorable for complex problems where either an alternative
approach is unavailable or the quality of the alignment is
more important than the computational cost. Therefore, the
recent algorithms are based on global iterative and stochastic
approaches. These methods are usually evaluated using a
predefined objective function. Therefore, an objective function
must be chosen in a way that is not only mathematically
logical but that is also biologically meaningful. Designing an
appropriate objective function is an ongoing research topic.
Many iterative methods apply EAs. The EA based approaches
have an important advantage over progressive methods in that
the alignment component can be made independent of the
objective function. This means that different fitness functions
can be tested without making any adjustment to the alignment
procedure, which makes them particularly attractive for testing
new objective functions. Another useful advantage of these
methods is that the computational duration can be shortened
by parallelization. These points motivate us to apply EAs to
solve MSA problems in this research.

In this paper, we have proposed a GA based approach,
namely GAPAM, which starts with a DP distance table. In
the DP distance table, the distance between two sequences
is calculated from a pairwise alignment using DP. We have
used this distance table to generate a guide tree. We have
introduced two new techniques and have applied them on the
guide tree to generate an initial population. To evaluate the
MSA, we have employed the weighted sum of pair score as
the fitness measure with the PAM250 [52] score matrix and
the CLUSTAL W default gap penalties.

The performance of the proposed algorithm has been
compared with some state-of-the-art GA and non-GA based
methods in MSA-GA and RBT-GA papers, including SAGA,
MSA-GA, RBT-GA, PRRP, CLUSTALX, CLUSTAL W, DI-
ALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and
PILEUPS. For comparison, we have considered only those
benchmark datasets and algorithms that were considered in
the papers reporting MSA-GA and RBT-GA. We have used the
weighted sum of pair method (WSPM) for fitness evaluation.
However, to allow us to compare with other methods, we have
calculated the corresponding BAliscore of the best WSPM
score. For comparison, the results of the 26 datasets solved
by MSA-GA, and the alignment results of the 34 datasets
solved by RBT-GA were taken from the published papers
[42] and [43], respectively. However, the results of the other
methods mentioned above were obtained from BAliBase 2.0
[44]. Based on the related BAliscore, GAPAM outperforms
the GA and non-GA-based methods mentioned earlier.

Fig. 1. Guide tree.

This paper is organized as follows. After the introduction,
a brief discussion about the tree based methods is given in
Section II. Section III presents the steps of the proposed
GAPAM method, Section IV presents a brief introduction of
the test datasets, and the experimental study of the GAPAM
and other methods are discussed in Section V. In Section VI,
our conclusions are provided.

II. TREE-BASED METHOD

A guide tree represents a hypothesis about the divergence
of sequences from a common ancestor, and the assumption
that this hypothesis guides the multiple alignment, which
ideally should follow the same order as the order of sequence
divergence as shown in Fig. 1.

A guide tree is calculated from a distance matrix [9]. The
distance between two sequences can be measured using either
an unaligned pair which is known as k-mer [53] or an aligned
pair with DP [3] or with Kimura [54]. There are different
methods to calculate the guide tree from the distance table,
such as the NJ method [25], which produces unrooted trees
with branch lengths proportional to the estimated divergence
along each branch, and the UPGMA [24], which produces
rooted trees with branch lengths proportional to the esti-
mated divergence along each branch. The complexity of the
neighbor-joining method is O(N*) which can be reduced to
O(N?), whereas the complexity for UPGMA is O(N?) and
can be reduced to O(N?) [26], where N is the number of
sequences. Therefore, in this paper, we have used the UPGMA
method to calculate guide trees. The complexity of the tree-
base method is O(N? + L?), where L is the length of the
sequences.

The following subsections discuss the distance calculation,
the guide tree construction, and the output (multiple sequence
alignment) of the guide tree.

A. Distance Calculation

1) k-Mer Distance Calculation: This distance is calculated
from an unaligned pair of sequences. To describe this method
[53], let us assume two sequences

X = ABCDEF and Y = CDBCDA.

We also consider that the length of a K-tuple, a segment
length which is less than the sequences length, is 3. Wx and
Wy are the sets of all possible K-tuples of sequence X and
sequence Y, respectively. Such as

Wx = {ABC, BCD, CDE, DEF,.. .}

Wy = {CDB, DBC, BCD, CDA, ...}.
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So the resultant set from the above two sets is
Wxy = {ABC, BCD, CDE, DEF, CDB, DBC, CDA, .. .}.

The length of Wxy is considered as m. CX and CY are
represented as the sets of common K-tuples between Wxy
and Wx and also between Wxy and Wy, respectively

c*={1,1,1,1,0,0,0,...}

CcY={0,1,0,0,1,1,1,...}.

The distance between two unaligned sequences is then
calculated by the equation
kmerdist =" (CX —cV)”. (1)

i=1

The k-tuple (n-gram) based distance calculation is fast and
easy to compute, hence this method requires little computation
time [55]. However, the performance of this distance calcula-
tion depends on the size of the tuples. Shorter tuples contain
less information and include more randomness, while longer
tuples lengths contain more information and less randomness.
Unfortunately though, as tuple length increases, vector size
expands exponentially and thus becomes too large and com-
putationally inefficient.

2) Dynamic Distance Calculation: In this case, the dis-
tance of each pair is calculated from a pairwise alignment.
For a pairwise alignment problem, the well-known Needleman
and Wunsch [3] or Smith—Waterman algorithm [4] can be
employed. These methods use a dynamic programming table,
which is filled beginning at the end of the sequences and
attempts to match all possible pairs of residues according
to a scoring scheme for matches, mismatches and gaps, thus
generating a matrix of score values for all possible alignments
between the two sequences. The matrix is built recursively
according to (2), which ensures that the highest score identifies
an optimal alignment. This matrix has dimensions (n, m),
where n and m are the lengths of the two sequences, and
the matrix is constructed from top to bottom; to reach a given
position (i, j) in the matrix from a previous move, there are
three possible paths. The first is a diagonal move with no gap
penalty from position (i — 1, j — 1), the next two a move from
position (i — 1, j) to (i, j), and a move from position (i, j — 1)
to (i, j), both have a gap penalty

Fi—1,j—1)+s(x;,yj)
Fi-1,j)+d
FG,j—1)+d

0.

F(i, j) = max 2)

The value of s(x;, y;) is determined from a substitution ma-
trix (PAM [52] or BLOSUM [56]), in which a score is assigned
to every possible substitution or conservation according to its
probability in a biological system. In our research, we used
the CLUSTAL W default gap penalty (i.e., d is —10 for the
gap opening penalty).

The DP distance of each pair is calculated according to the
mismatch of the pairwise alignment using (3). To construct the
DP distance matrix (table), which shows the distance between

all sequence pairs, the above step will continue for each pair
of sequences

Dynamic distance = (mismatch)/(align length). 3)

3) Kimura Protein Distance Calculation: Equation (4) is
an alternate means to calculate the distance, and was developed
based on the relationship between the observed amino acid
substitutions and the actual (corrected) substitutions from PAM
or BLOSUM. The PAM matrices are based on mutations
observed throughout a global alignment, this includes both
highly conserved and highly mutable regions. The BLOSUM
matrices are based only on highly conserved regions in series
of alignments forbidden to contain gaps. The match score is
calculated by summing the number of exact matches. The
partial matches between ambiguous symbols also contribute
to the match score as fractional scores. The value of § is
computed by dividing the match score by the number of
positions scored. Gap positions are ignored, and only exact
matches contribute to the match score [57]

S = (exact_matches)/(positions_scored)
D=1-S§

Distance = —In(1 — D — 0.2 D). 4)

The most important consideration when calculating the
distance between the aligned sequences, is that the sequences
must be aligned properly [57]. This is because the aligned
distance methods examine each pair of aligned sequences,
symbol-by-symbol, and count the number of exact matches,
partial matches and gap symbols.

B. Guide Tree Construction and Multiple Alignment

The basic guide tree algorithm consists of the following
stages.
Stage (i) Calculate the distances among all pairs.
Stage (ii) Prepare a distance matrix from Stage (i).
Stage(iii) Find a part of a guide tree by selecting the smallest
distance pair from the distance matrix.

After these stages of the guide tree, the distance matrix is
updated using (5), and then Stage (iii) is repeated to make a
tree. This process continues until all sequences are combined
and a complete guide tree is constructed as shown in Fig. 1

Jn
1 i Zdirow(m)jcnl(n)

dij — 72 n=1

—— (i # )),
Im m=1 Jn

d;=0 (ati = )).
)

Here, d;; is the distance between the ith row and the jth
column of a new distance matrix at i > 1 and j > 1. i, is
the number of elements in the ith row at j = 1, and the ith
row elements are stored in the irow array. j, is the number of
elements in the jth column at i = 1 and also the jth column
elements are stored in the jcol array. The value of diowgn) jcol(n)

is obtained from the original distance table (matrix).
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Seq3: NKYLS
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Fig. 2. Output (MSA) of guide tree.

Stage (iv) The sequences are progressively aligned according
to the branching order in the guide tree as shown
in Fig. 2. To present the output of the guide tree,
let us assume five sequences as follows:

NFS, Seq2: NYLS, Seq3: NKYLS,
NFLS, Seq5: NKLS.

Seq 1 :
Seq 4 :

III. GAPAM: THE PROPOSED ALGORITHM

The steps of our progressive alignment method using genetic
algorithm (GAPAM) are: initial population, generation of child
population by applying genetic operators, forming a new
population for the next generation, and the stopping criteria.
As we mentioned earlier, the solution of the progressive
alignment method (tree-base) usually converges to a local
optimum. Therefore, in the initial stage, we try to identify the
local optima and their surrounding points. GA starts evolving
from these individuals and leads the algorithm to find a better
solution, which may be or may not be the global optimal
solution. The flowchart of this method is shown in Fig. 3.
The steps of this method are explained below.

A. Initial Generation

The aim of this step is to generate good initial solutions.
The flowchart for generating the initial population is shown in
Fig. 4 and the stages are described below.

Stage 1: GAPAM starts with a DP distance table. The DP
distance is calculated from the pairwise alignment according
to its mismatch. The guide tree is constructed from this table,
which is referred to as TRI, and we generate the multiple
sequence alignment (MSA1) from this guide tree.

Stage 2: In the second stage, the distance table is calculated
from the multiple sequence alignment (MSA1), which is
called the Kimura distance table. The Kimura distances are
calculated from the aligned sequences. The second tree, TR2,
is constructed from the Kimura distance table, and we then
produce MSA2 as shown in Fig. 4.

Stage 3: In this stage, two mechanisms are implemented on
the two trees, generated in Stage 1 and Stage 2, to generate 100
different trees. The first mechanism is to generate guide trees

[Initial Generation ]

d

Child Generation
generated by
Genetic Operators

!

New Generation
( A mixture of
Child and Parent
Generation )

Is the best
solution of the last
100 generations
he same?

Fig. 3. Flowchart of GAPAM.

with randomly selected sequences and the second is shuffling
the sequences inside that tree. The initial population produced
by this method contains a set of multiple sequence alignments.
Therefore, after receiving the set of guide trees, it needs to
make a set of multiple sequence alignments. The functions of
these mechanisms are explained below.

Mechanism 1: In this case, the sequence numbers are
selected randomly from one tree (either TR1 or TR2). The
selected sequences then make a new sub-tree with the same
branching orders as the original one, and the non-selected
sequences make a new sub-tree. Lastly, these two sub-trees
are connected together to make a new tree. Fig. 5 shows the
behavior of Mechanism 1.

Mechanism 2: In this case, two sequence numbers are
selected randomly from one tree (either TR1 or TR2). Then,
these two sequences exchange their positions to make a new
tree. Fig. 6 shows the function of Mechanism 2.

B. Fitness

The WSPM is commonly used as a fitness measure for
multiple sequence alignments. Here, each column in an align-
ment is scored by summing the product of the scores of each
pair of symbols and their pair weight. The score of the entire
alignment is then summed over all column scores by using (6)
and (7)

L N-1 N
S= Z S; where §; = Z Z Wijcost(A;, Aj). (6)
I=1 i=l j=i+l
Here, S is the cost of the multiple alignments. L is the length

(columns) of the alignment, S; is the cost of the /th column of
L length. N is the number of sequences, W;; is the weight of
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Fig. 4. Flowchart of initial generation.

sequence i and j. In CLUSTAL W, the weight is calculated
for each sequence and the pair weight is the product of the two
sequence weight. cost(A;, A;) is the alignment score between
the two aligned sequences A; and A;. When A; #“-” and A; #
“-” then cost(A;, A;) is determined either from the percentage
of acceptable point mutations (PAM) [52] or BLOSUM [56]
matrix. Also when A; =“-" and A; = “-” then cost(A;, A;) = 0.
Finally, the cost function cost(A;, A ;) includes the sum of the
substitution costs of the insertion/deletions when A; # “-” and
Aj=""or A;j="“"and A; # *“-” using a model with affine
gap penalties as shown in

G =g+nx. @)

Here, G is the gap penalty, g is the cost of opening a gap,
x is the cost of extending the gap by one, and »n is the length
of the gap.

In CLUSTAL W, the author used different weight matrices,
which depend on the estimated divergence of the sequences to

@
1 4 7 3 2 6 8 5

CR

[ofsfafrfefafofo]

©) / \ )

=4

a 7 3 2 8 5
4

N,

6
6 1 8 5

©)

7 3 2

Fig. 5. (a) Guide tree. (b) 1 represents randomly selected sequence numbers
from (a), and 0 represents unselected sequence numbers. (c) Subtree made by
the selected sequences. (d) Subtree made by the remaining sequences of (a).
(e) New guide tree made from (c) and (d).

4 7 8 2 6 1 3 5

~_ 7

Fig. 6. Shuffling mechanism, sequence numbers 8 and 3 interchange their
positions.

be aligned at each stage, and proposed dynamically changeable
gap penalties to overcome the local minima issue. Therefore,
in this research, the CLUSTAL W weighted scheme and the
CLUSTAL W default gap penalties (gap opening penalty is
—10 and the gap extension penalty is —0.20), and the PAM250
matrix, a mutation probability matrix, were considered with
the WSPM fitness measure. Note that PAM250 is considered
as a good general matrix for protein database searching.
Also the PAM matrices have been developed based on global
alignments. To calculate the weight of each sequence, we used
the CLUSTAL W weight function.

C. Child Generation

For each individual in the initial population, the WSPM
score is calculated, and the individuals are then sorted accord-
ing to the descending order of their scores. To generate a child
population of 100 individuals in any generation, the following
three genetic operators are used:

1) single point crossover;

2) multiple point crossovers;

3) mutation.
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*
A DKG A-BdD-K-G
~BC|D-KG —B-CPK—G
A-C|-D-G ACED-G—-
ABC|-D-G ABCD——G~
Parent g Parent b
ABC| |-DKG A-BC| |-D-K-G
_BC | |p-kG -B—C| |-DK—G
A-C| |-D-G AC— |-D-G—
ABC| |-D-G ABC |D—G-
al a2 bl b2
ABC-D-K-G A-BC-DKG
-BC-DK—G -B-C D-KG
A-C-D-G— AC—-D-G
ABCD—-G— ABC—-D-G
Individual 1 Individual 2
(al+b2) (bl+ a2)

Fig. 7. Single point crossover.

1) Single Point Crossover: In this crossover, one individual
is selected from the top 50% and another from the bottom
50% of the parent generation. The single point crossover [36]
is implemented as shown in Fig. 7. Its procedure is that first
a column position is selected randomly as shown with a “*”
in Fig. 7. The parent having the better score is then divided
vertically at that column. Let us assume that parent a has the
better score column, so that this parent is separated vertically
into two pieces. The second parent b is also divided into two
pieces in such a way that each row of the first piece (and hence
also the second piece) has the same number of elements as the
first piece (and hence also the second piece) of the first parent.
These pieces of these two parents are then exchanged and
merged together to generate two new individuals as shown in
Fig. 7. However, only the better new individual is considered
as a child.

2) Multiple Point Crossovers: In this crossover, two par-
ents are selected, one from the top 50% and another from the
bottom 50% of the parent generation. For multiple crossovers,
each parent is divided into three pieces. The different pieces
from these parents are then exchanged and merged together to
generate two new individuals. However, the better one will be
taken as a child. The crossover is implemented in two steps
as described below.

Step 1: To cut the first piece effectively, we compare the
scores of the first 25% of columns for both parents.
The parent having the better score is divided ver-
tically at that column. The other parent is divided
using the mechanism introduced in the single point
crossover, as can be seen in Fig. 8.

We now have two pieces of each parent from Step
1. To create another piece, we follow the same
procedure of Step 1, with considering the last 25% of
columns (see Fig. 8). This gives us three pieces for
each parent. To complete the crossover, the middle
pieces are exchanged between the parents, and then

Step 2:

AB(JEGKD-B- A-B-C|[EG—KDB
~BC|E~ WED-B —BC-|E WE-D-B
A-C|-GWEDB- A-C[-G-W-ED-B
A-CJEG - —-BC ~AC|EG - —B-C
Parent a Parent b
ABC A-B-C ||~ EG —|KDB
“BC " _pe ||—EwWE-D-B
A-C A-C— | |G -WRD-B
A-C ~AC— |[FOT B C
al bl b2
EG— ||KD-B- —EG — | |[KDB
E-WE | |-—-D-B —EWE-| [D-B
~GWE | |--DB- ~G-W-E | [D-B
EG — | |—BC EG— | [B-C
a2’ a3 b2’ b3

ABC— EG —KD-B-
-BC—E WE-—D-B
A-C-G-W-E —DB-
A-CEG ——-——BC
Individual 1
(al+b2'+a3)

A-B-CEG —KDB
——-BC-E-WED -B
A-C—GWED -B
-AC —EG—B-C
Individual 2
(bl+ a2"+b3)

Fig. 8. Multiple point crossovers.

all three pieces are merged together to generate two
new individuals as shown in Fig. 8.

In Fig. 8, the lengths (columns) of the two parents (parent a
and parent b) are 10 and 12, respectively. The first 25% of the
columns of the first parent are two and a half (2.5) columns. In
that case, we considered three columns. In the first step, parent
a has the better score in the first 25% columns. Therefore,
Parent a is divided first and Parent b is tailored according to
Parent a. After the division, we have two pieces from each
parent (al and a2 from Parent a, bl and b2 from Parent ). In
the second step, Parent b has the better score in the last 25%
of columns. Therefore, Parent b is divided first and Parent a
is tailored accordingly. This division provides two new pieces
for each parent (a2’ and a3 from a2, b2’ and b3 from b2).
Next, two new individuals are generated by connecting the
pieces as (al + b2’ + a3) and (bl + a2’ + b3). From these two
individuals, the better one is selected as a child.

3) Mutation: One individual (MSA) is randomly selected
from the whole populations. From this MSA, the distance
among sequences is calculated and stored in a distance ta-
ble. The new guide tree is constructed from this calculated
distance. In the new guide tree, the sequence numbers are
shuffled to find a better guide tree and the MSA of the new
guide tree is considered as a mutated child (see Fig. 9).

D. New Generation

To form the new generation, we have used the u+y selection
strategy, where the multiple sequence alignments from the
parent (1) and child (y) generations compete based on their
objective fitness scores. In this research, the best 50% of the
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Fig. 9. Mutation.

parents and the best 50% of the children are merged together
while ensuring that there is no duplication of individuals.
We have also experimented with other splits, such as 40-60
(parent—child) and 60—40. The results of those experiments
showed that the 50-50 split outperforms the 40-60 and 60—
40 splits with an average improvement of 4.38% and 7.66%,
respectively. Therefore, we have chosen this mix based on
our experimental observations, which ensures a better balance
between exploration and exploitation. The new generation
is then considered as the parent population that is used to
continue the evolution process of GAPAM.

E. Termination Condition

The best solution in each generation is recorded. If the
best solution remains the same in 100 consecutive generations,
the algorithm will be terminated. This termination condition
was based on our experimental observations. We tested our
algorithm for up to 300 generations after getting the best
solution, and we observed that the best solution was hardly
changed, and that the variation of the average solution per
generation was also small. The computational complexity of
the GAPAM method was (N3 + L?), where L is the length of
the sequence and N is the number of sequences.

IV. TEST DATA SETS

In order to evaluate our proposed approach, we have solved
a good number of test datasets from the benchmark BAI-
iBase alignment database. The original BAliBase version 1.0
[58] consists of 142 reference alignments with over 1000
sequences. BAliBase version 2.0 [44] is an improved version,
extended from version 1 with 167 reference alignments, to over
2100 sequences. BAliBase version 2.0 contains eight reference
sets. Each reference has a variety of alignment problems. Ref-
erence 1 contains small numbers of equidistant sequences. The
orphan or unrelated sequences are considered in reference 2.
Reference 3 contains a pair of divergent subfamilies where
the two groups are less than 25% identical. Reference 4 con-
tains long terminal extensions, and reference 5 contains large
internal insertions and deletions. Lastly, reference sets 6-8
contain test case problems where the sequences are repeated
and the domains are inverted.

V. EXPERIMENTAL STUDY

In this section, we have first analyzed the performance of
the proposed GAPAM algorithm, and then we have compared
our algorithm with other well-known methods. In this research,
we have analyzed our results based on ten independent runs.
In comparison, MSA-GA and RBT-GA used five and ten
independent runs, respectively.

A. Experimental Analysis

In this section, we have reported a parametric analysis,
analyzed the effect of both search operators and the initial
population on the performance of the proposed algorithm, and
discussed the computational effort required.

1) Selection of Parameters: In the proposed GAPAM
algorithm, we have used two basic search operators: crossover
and mutation. In order to determine the best mix of the prob-
abilities of crossover and mutation, we have carried out five
different experiments, using ten randomly selected BaliBase
datasets (version 2.0) [44], as follows:

a) 100% crossover (100-crc);
b) 60% crossover and 40% mutation (60—40 crc-mu);
¢) 50% crossover and 50% mutation (50-50 crc-mu);
d) 40% crossover and 60% mutation (40-60 crc-mu);
e) 100% mutation (100-mu).

For each of the ten datasets, the algorithm was executed
for ten independent runs. For each dataset, the best WSPM
score out of the ten runs was recorded and the corresponding
BAliscore was reported in Table I, where the bold face value
represents the best score. From this table, it is observed that
GAPAM with the 50% crossover and 50% mutation option has
obtained the best solutions for seven out of ten datasets, the
60% crossover and 40% mutation for two and 40% crossover
and 60% mutation for one but the solution is the same as
that of 50% crossover and 50% mutation. The options 100%
crossover has achieved the best solution in one test case,
however the option 100% mutation has not achieved any good
quality solutions. The solutions obtained by the 50% crossover
and 50% mutation for the other three datasets are close to
the best scores. Therefore, we can conclude that GAPAM
has achieved overall better performance for these test datasets
when the rate of crossover and mutation were selected as 50%
for each. When comparing the computational times, 100%
crossover is the least expensive and 100% mutation is the most
expensive option. The option 50% crossover and 50% mutation
is in the middle place. The options 60% crossover and 40%
mutation and 40% crossover and 60% mutation are in second
and fourth place, respectively. However, it is worth recalling
that although the 100% crossover is the least expensive option,
it was only the best in one test case. Considering both the
quality of solutions and the computational time required,
we can say that 50% crossover and 50-mutation is the best
option.

2) Effect of Operators and Initial Population: The pro-
posed algorithm GAPAM uses an improved initial population
and new genetic operators that contribute to it performing
better than other algorithms. To analyze the effect of these
two components on the algorithm’s performance, we have
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TABLE I

PARAMETER ANALYSIS

623

100% Crossover 60% Cmssowfr and 50% Crossove.r and 40% Cmssove.:r and 100% Mutation
40% Mutation 50% Mutation 60% Mutation

Name of Corresponding Average Corresponding Average Corresponding Average Corresponding Average Corresponding Average
Datasets BAliscore of Best | Computation | BAliscore of Best | Computation BAliscore of Computation BAliscore Computation | BAliscore of Best | Computation

‘WSPM Score Times (s) WSPM Score Times (s) Best WSPM Score Times (s) of Best WSPM Score Times (s) ‘WSPM Score Times (s)

lhavA 0.842 164.20 0.869 796.40 0.879 610.36 0.875 931.40 0.847 1110.42

luky 0.726 306.00 0.817 681.09 0.808 837.46 0.817 1207.45 0.746 2334.56

Ref. 2 | 2hsdA 0.765 271.20 0.816 665.40 0.796 869.25 0.785 1236.20 0.790 1783.41

2pia 0.829 205.20 0.799 1090.40 0.826 1337.33 0.797 1976.56 0.795 2144.20

IpamA 0.825 469.20 0.814 1662.25 0.860 1865.51 0.849 2570.31 0.851 3191.15

Iwit 0.775 96.20 0.788 175.36 0.758 253.12 0.761 669.20 0.736 1035.30

luky 0.464 314.40 0.440 729.31 0.468 818.44 0.447 1226.20 0.410 2270.40

Ref. 3 | kinase 0.808 252.00 0.811 713.20 0.828 944.35 0.823 1437.20 0.803 2343.20

IpamA 0.795 516.00 0.834 1488.20 0.835 1792.10 0.835 2486.20 0.775 2832.21

4enl 0.679 394.12 0.837 1465.40 0.800 2011.74 0.790 1518.40 0.736 2011.21

TABLE II

PERFORMANCE TEST OF THE GENETIC OPERATORS AND THE INITIAL
GENERATION OF GAPAM METHOD BY COMPARING WITH THE SOLUTION
OF HILL CLIMBING AND GAPAM WITH THE RANDOMLY GENERATED
INITIAL POPULATION RESPECTIVELY

Name of || GAPAM [l Climbing | o G i popion
Datasets (BAliscore) | (BAliscore) (BAliscore)
lhavA 0.879 0.810 0.813
luky 0.808 0.723 0.750
Ref. 2| 2hsdA 0.796 0.718 0.764
2pia 0.826 0.742 0.703
IpamA 0.860 0.746 0.826
1wit 0.758 0.611 0.676
luky 0.468 0.403 0.458
Ref. 3| kinase 0.828 0.787 0.771
IpamA 0.835 0.723 0.770
4enl 0.800 0.704 0.716
Average score 0.786 0.697 0.725
Average (%) improvement of 12.79 8.43
GAPAM over

designed two sets of experiments. In the first set, GAPAM
was run with a randomly generated initial population (instead
of our improved initial population), and the second set used
a hill climbing approach (for searching instead of GAPAM)
starting from the improved initial population. WSPM was used
as the fitness measure. We have used ten BAliBase datasets for
these experiments (five from reference set 2 and five from the
reference set 3). Each dataset was run with GAPAM (with the
two different configurations) for ten independent runs. Based
on the corresponding BAliscore of the best WSPM solution
found, GAPAM with improved initial population outperforms
GAPAM with initial random population for all datasets and
shows an average improvement of 8.43%. The results are
similar with the hill climbing approach, where GAPAM shows
an improvement of 12.79%. The first set of experiments thus
proves the superiority of our proposed initial population, and
the second set clearly demonstrates the ability of our proposed
genetic search operators to outperform simple hill-climbing.
The details of these experiments are reported in Table II.

3) Computational Effort and Convergence: The compu-
tational time required for finding good multiple sequence
alignments is dependent on the sequence length, the number of
sequences, and the similarities of the sequences. In addition,

the choice of algorithmic parameters also plays an important
role. We have tried to develop a relationship between the com-
putational time required (with our algorithm) and the sequence
length and sequence numbers. Although it is hard to make any
firm conclusion based on linear/nonlinear regression analysis,
it showed an approximately polynomial relationship with
degree of two. We must mention here that we have tried linear
and other combinations of higher order polynomial functions.

To show the convergence behavior of our algorithm, we
have plotted the best and the average WSPM scores against
the number of generations. As for example, three such plots
(for one specific run) for three datasets from reference set 3
are presented in Fig. 10. These graphs showed that our
algorithm improved both the best and the average scores very
rapidly at the initial stage of the search process and that the
best score then converged to a solution. This is the type of
pattern we expect from good search algorithms. As of the
plots, although the average scores do not converge, the rate
of improvement for the best score in the later generations of
the algorithm is insignificant.

B. Solution Quality Assessment

To judge the quality of the solutions produced by our algo-
rithm, we have considered only those benchmark datasets and
algorithms that were considered in the papers reporting MSA-
GA and RBT-GA, and that used BAliscore (an open source
program of the BAliBase benchmark) to measure the accuracy
of the solutions. The authors of MSA-GA considered the best
solution of five runs for each dataset and reported the BAlis-
core. Moreover, the authors of RBT-GA also reported the best
solution with BAliscore of ten runs. In our algorithm, we con-
sidered ten independent runs of each dataset and have used the
corresponding BAliscore of the best found WSPM solution.
BAliscore scores a solution (multiple sequence alignment)
between 0.0 and 1.0. If the solution is identical with the corre-
sponding manually created reference alignment then the score
is 1.0. If nothing matches with the reference alignment then the
score is 0.0. However, if some parts match with the reference
alignment then the score is lower than 1.0 but greater than 0.0.

In MSA-GA, the authors considered 28 test datasets from
reference sets 1 to 5 and 8. Among them, 18 datasets were
from reference 1 and two were from each of the other reference
datasets. However, currently BAliscore does not work for
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Fig. 10. Graphical presentations of the performance of the GAPAM method
w.r.t. the best and average WSPM score per generation.

reference set 8. This is because of insufficient information
supplied either by the reference alignment file or by the
annotation file. Therefore, we excluded the two datasets of
reference 8, thus leaving 26 for comparison. In RBT-GA, the
author considered all 23 test datasets of reference 2, and 11
out of 12 from reference 3. In total, we considered 56 test
datasets including 18 from [1], 23 (all) from reference 2, 11
from reference 3, and 2 from each of references 4 and 5. All
these datasets belong to the BAliBase 2.0 benchmark datasets.

1) Problem Solving with GAPAM: For each of the 56
datasets, we have executed our algorithm for ten independent
runs and recorded the best, worst, and average WSPM scores
with standard deviation, and the corresponding BAliscore of
the best WSPM score in Table III. The WSPM scores could
be either positive or negative, as it depends on the level
of similarity among the residues in the sequences. This is
because, if the residues among the comparable sequences are
similar, or partially similar, it needs a small number of null

(“-”) symbols to make an alignment of the sequences. In
this case, the WSPM score of this alignment is positive. On
the other hand, if the dissimilar parts among the sequences
are high, a large number of null symbols are added to the
alignment. In this case, the WSPM score becomes negative
because of gap penalties. Note that high positive values and
low negative values are considered as good scores. We must
also mention here that the average scores and hence the
standard deviations in the ten runs were not very different.

For comparisons with other methods, we have taken the
results of those methods from their published literature [6],
[42], [43], as discussed below. However, it is not possible for
us to compare our results with MUSCLE [26] and MAFFT
[27], because the datasets and/or the fitness measure used
by these two algorithms do not match with the same of
our algorithm. For example, these algorithms do not provide
BAliscore results for the individual problems of the BAliBase
2.0 test sets. Instead, the authors of MUSCLE reported the
average Q score of the BAliBase 2.0 datasets, while the authors
of MAFFT considered the datasets from BAliBase 3.0.

2) Comparing GAPAM with MSA-GA and Other Methods:
The authors of MSA-GA [42] selected 28 test cases from
reference sets 1 to 5 and 8. As discussed earlier, we have
considered 26 out of these 28 test cases. The results are
provided in Table IV and plotted in Figs. 11 and 12.

In Table IV, the bold face data represents the best perform-
ing scores among the methods. From Table IV and Fig. 11,
it is observed that GAPAM obtained more accurate solutions
in 19 test cases out of 26, whereas MSA-GA was more
accurate in two, MSA-GA w/prealign in one, SAGA in four,
and CLUSTAL W in one. In seven test cases, where GAPAM
did not achieve the best solutions, the solutions are close to
the best solutions of the other methods reported in this table.

To evaluate the overall performance of all the methods
reported in Table IV, the average scores of 26 test cases were
calculated and reported in the bottom row. The average score
of GAPAM for 26 datasets is the best of all the algorithms.
From the experimental results, we can claim that GAPAM has
better performance on these 26 test cases.

3) Comparing GAPAM with RBT-GA: We have considered
all of the 34 datasets solved by RBT-GA [43]. We have taken
the approximate results of RBT-GA as reported in the paper
[43]. The summary of the experimental results of reference
sets 2 and 3 is presented in Tables V and VI and is plotted in
Figs. 13 and 14, and Figs. 15 and 16, respectively.

a) Performance of GAPAM in Reference 2: The 23
datasets in this reference are significantly different in lengths
and numbers of their sequence. They also contain what
is called “orphan sequences.” GAPAM performed differ-
ently with different datasets. To judge the performance of
GAPAM with respect to BAliscore, we have compared with
SAGA, RBT-GA, PRRP, CLUSTALX, DIALIGN, HMMT,
SB_PIMA, ML_PIMA, MULTALIGN, and PILEUPS. Ta-
ble V and Fig. 13 show that for the 23 test cases, GAPAM has
successfully found more accurate solutions than the others in
15 test cases, RBT-GA in 5, PRRP in two, and CLUSTALX
in one. In eight test cases, where GAPAM could not obtain
the best solutions, they were close to the best solutions.
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TABLE III
SUMMARY OF THE TEST RESULTS OF GAPAM METHOD

Sequence | Sequence With WSPM
Name of Datasets Number Length Best Score Worst Score | Ave. Score Std Corresponding
BAliscore
lidy 5 58 65.93 4245 49.97 7.13 0.565
1tvxA 4 69 18.387 13.56 16.69 5.29 0.316
luky 4 220 —5.52 —7.25 —6.35 2.86 0.402
Kinase 5 276 —78.27 —115.28 —89.83 10.67 0.487
1ped 3 374 23.44 5.94 12.51 6.48 0.498
2myr 4 474 —83.71 —89.32 —84.34 1.87 0.317
lycc 4 116 —27.419 —2.581 —10.42 8.96 0.845
3cyr 4 109 32.37 23.75 26.78 2.56 0.911
Ref. 1 lad2 4 213 41.26 37.96 39.43 1.11 0.956
11dg 4 675 46.72 34.83 42.07 4.15 0.963
1fieA 5 442 274.45 164.34 213.81 39.57 0.963
IsesA 5 63 235.37 140.94 183.36 33.94 0.982
lkrn 4 82 70.62 62.29 65.59 5.20 0.960
2fxb 5 63 150.14 89.70 116.82 21.69 0.970
lamk 5 258 73.50 44.01 57.25 10.6 0.998
larSA 4 203 40.99 24.53 31.92 5.92 0.974
1gpb 5 828 836.78 742.06 794.76 33.56 0.983
Itaq 5 928 614.13 535.85 579.98 2391 0.945
laboA 15 80 —377.456 —449.87 —454.63 37.86 0.796
lidy 19 60 408.98 347.68 380.81 19.75 0.989
lcsy 19 99 —69.93 —151.77 —101.09 23.45 0.764
1r69 20 76 —28.937 —74.86 —50.94 17.23 0.965
ItvxA 16 69 334.38 300.64 315.46 10.04 0.92
ItgxA 19 71 342.38 262.79 307.97 25.94 0.878
lubi 19 60 36.30 —40.42 4.93 41.54 0.767
1wit 20 106 —120.21 —256.97 —183.60 49.45 0.851
2trx 19 94 903.23 814.55 855.29 30.21 0.986
Isbp 16 262 —19.79 —87.38 —75.19 24.93 0.765
lhavA 16 242 49.62 20.357 33.57 11.95 0.879
Ref. 2 luky 23 225 —84.92 —180.95 —121.98 35.64 0.808
2hsdA 20 255 —389.79 —462.57 —443.99 30.55 0.796
2pia 16 294 —146.38 —282.48 —223.91 30.26 0.828
3grs 15 237 —142.16 —288.47 —210.66 36.37 0.746
Kinase 18 287 —191.16 —255.51 —224.46 2072 0.799
lajsA 18 389 1956.94 1873.33 1920.89 30.95 0.899
lept 15 434 —435.69 —533.92 —490.22 37.40 0.875
11vl 23 473 —826.15 —1030.76 —916.93 88.66 0.781
IpamA 18 511 —974.64 —1040.92 —1019.11 26.78 0.860
1ped 18 388 1940.82 1811.97 1862.50 34.46 0.912
2myr 17 482 13970.32 13788.35 13865.22 64.49 0.822
4enl 17 440 1386.81 1222.06 1299.04 54.08 0.896
lidy 27 60 —512.34 —677.41 —588.37 70.85 0.601
1r69 23 78 —1103.34 —1240.69 —1174.5 50.35 0.709
lubi 22 97 —959.62 —1026.13 —1004.26 25.59 0.386
1wit 19 102 —223.56 —357.01 —263.99 34.67 0.758
luky 24 220 —3565.98 —3710.55 —3662.99 46.78 0.468
Ref. 3 kinase 18 287 —294.62 —412.63 —357.70 36.54 0.828
lajsA 28 396 —4199.49 —4295.81 —4250.98 38.87 0.311
1pamA 19 511 —2106.98 —2218.21 —2163.54 49.25 0.835
Iped 21 388 —1199.41 —1304.44 —1251.38 38.58 0.813
2myr 21 482 —6498.07 —6645.10 —6574.31 54.84 0.513
4enl 19 427 —45.86 —120.70 —72.34 23.33 0.800
Ref. 4 ldynA 6 848 —101338.46 | —101396.19 | —101377.23 | 24.88 0.033
Kinase2 7 468 —25744.36 —25839.97 —25792.01 26.42 0.384
Ref. 5 2cba 8 328 —987.14 —1095.04 —1047.40 44.01 0.852
S51 15 301 —2553.28 —2706.59 —2648.79 52.83 0.835

625
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TABLE IV
EXPERIMENTS ON SELECTED DATASETS OF MSA-GA

Name of Datasets GAPAM MSA-GA MSA-GA w/prealign SAGA CLUSTAL W
lidy 0.565 0.427 0.438 0.342 0.500
ItvxA 0.316 0.295 0.209 0.278 0.042
luky 0.402 0.443 0.405 0.672 0.392
Kinase 0.487 0.295 0.488 0.862 0.479
Iped 0.498 0.501 0.687 0.746 0.592
2myr 0.317 0.212 0.302 0.285 0.296
lycc 0.845 0.650 0.653 0.837 0.643
3cyr 0.911 0.772 0.789 0.908 0.767
Ref 1 lad2 0.956 0.821 0.845 0.917 0.773
1ldg 0.963 0.895 0.922 0.989 0.880
1fieA 0.963 0.843 0.942 0.947 0.932
IsesA 0.982 0.620 0.913 0.954 0.913
lkrn 0.960 0.908 0.895 0.993 0.895
2fxb 0.970 0.941 0.985 0.951 0.985
lamk 0.998 0.965 0.959 0.997 0.945
larSA 0.974 0.812 0.946 0.971 0.946
1gpb 0.983 0.868 0.948 0.982 0.947
Itaq 0.945 0.525 0.826 0.931 0.826
Ref. 2 2pia 0.877 0.761 0.768 0.763 0.766
IpamA 0.859 0.755 0.758 0.623 0.757
Ref 3 Kinase 0.825 0.58 0.619 0.758 0.619
IpamA 0.835 0.703 0.744 0.579 0.743
Ref. 4 1dynA 0.033 0.038 0.034 0.000 0.000
Kinase2 0.384 0.71 0.635 0.364 0.630
Ref. 5 2cba 0.852 0.422 0.621 0.767 0.628
S51 0.835 0.528 0.73 0.831 0.75
Average Score 0.751 0.528 0.695 0.740 0.679
TABLE V

EXPERIMENTS ON REFERENCE 2 DATASETS OF BALIBASE 2.0

Name of PRRP | CLUSTAL | SAGA | DIALI | HMMT | SB_PIMA | ML_PIMA | MULTALIGN | PILEUP8 | RBTGA | GAPAM
Datasets X GN

laboA | 0.256 0.65 0.489 | 0.384 | 0.724 0.391 0.22 0.528 0.000 0.812 0.796

lidy 0.37 0.515 0.548 | 0.000 | 0.353 0.000 0.000 0.401 0.000 0.997 0.989

lcsy 0.35 0.154 0.154 | 0.000 | 0.000 0.000 0.000 0.154 0.114 0.735 0.764

1r69 | 0.675 0.675 0.475 | 0.675 | 0.000 0.675 0.675 0.675 0.45 0.9 0.965
1tvxA | 0.207 0.552 0.448 | 0.000 | 0.276 0.241 0.241 0.138 0.345 0.891 0.92
ItgxA | 0.695 0.727 0.773 | 0.63 0.622 0.678 0.543 0.696 0.318 0.835 0.878

lubi | 0.056 0.482 0.492 | 0.000 | 0.053 0.129 0.129 0.000 0.000 0.795 0.767

1wit 0.76 0.557 0.694 | 0.724 | 0.641 0.469 0.463 0.5 0.476 0.825 0.851

2trx 0.87 0.87 0.87 | 0.734 | 0.739 0.85 0.702 0.87 0.87 0.982 0.986

Isbp | 0.231 0.217 0.374 | 0.043 | 0.214 0.043 0.054 0.186 0.177 0.778 0.765
lhavA | 0.52 0.48 0.448 | 0.000 | 0.194 0.259 0.238 0.5 0.493 0.792 0.879

Ref. 2 | luky | 0.351 0.656 0.476 | 0.216 | 0.395 0.256 0.306 0.585 0.562 0.625 0.808

2hsdA | 0.404 0.484 0.498 | 0.262 | 0.423 0.39 0.561 0.593 0.278 0.745 0.796

2pia | 0.767 0.752 0.763 | 0.612 | 0.647 0.73 0.695 0.765 0.766 0.730 0.826

3grs | 0.363 0.192 0.282 | 0.350 | 0.141 0.183 0.211 0.192 0.159 0.755 0.746
Kinase | 0.896 0.848 0.867 | 0.692 | 0.749 0.755 0.651 0.83 0.799 0.712 0.799

lajsA | 0.227 0.324 0.311 | 0.000 0.242 0.000 0.000 0.311 0.227 0.892 0.899

Iept | 0.821 0.66 0.776 | 0.425 | 0.388 0.184 0.277 0.777 0.688 0.584 0.875

1vl | 0.772 0.746 0.726 | 0.783 | 0.539 0.62 0.688 0.614 0.678 0.567 0.781
IpamA | 0.711 0.761 0.623 | 0.576 0.53 0.393 0.386 0.566 0.702 0.66 0.86

Iped | 0.881 0.834 0.835 | 0.773 | 0.696 0.651 0.647 0.741 0.749 0.78 0.912

2myr | 0.582 0.904 0.825 | 0.84 0.443 0.727 0.75 0.894 0.786 0.675 0.822

4enl | 0.668 0.375 0.739 | 0.122 | 0.213 0.096 0.092 0.384 0.224 0.812 0.896
Average Score | 0.541 0.583 0.586 | 0.384 | 0.401 0.379 0.371 0.517 0.429 0.777 0.851
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TABLE VI
EXPERIMENTS ON REFERENCE 3 DATASETS OF BALIBASE 2.0
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Name of PRRP | CLUSTAL | SAGA | DIALI | HMMT | SB_PIMA | ML_PIMA | MULTALIGN | PILEUP8 | RBTGA | GAPAM
Datasets X GN
lidy | 0.000 0.273 0.364 | 0.000 | 0.227 0.000 0.000 0.045 0.000 0.546 0.601
1r69 | 0.905 0.524 0.524 | 0.524 | 0.000 0.000 0.905 0.000 0.000 0.374 0.709
lubi | 0.415 0.146 0.585 | 0.000 | 0.366 0.000 0.000 0.000 0.268 0.31 0.386
1wit | 0.742 0.565 0.484 | 0.500 | 0.323 0.645 0.323 0.242 0.210 0.78 0.758
luky | 0.139 0.130 0.269 | 0.139 | 0.037 0.083 0.148 0.241 0.083 0.35 0.468
Ref. 3 | kinase | 0.783 0.720 0.758 | 0.650 | 0.478 0.541 0.682 0.688 0.599 0.697 0.828
lajsA | 0.128 0.163 0.186 | 0.000 | 0.006 0.000 0.000 0.000 0.110 0.18 0.311
1pamA | 0.683 0.678 0.579 | 0.683 | 0.169 0.546 0.590 0.546 0.754 0.525 0.835
1ped | 0.679 0.627 0.646 | 0.641 | 0.172 0.450 0.507 0.665 0.722 0.425 0.775
2myr | 0.646 0.538 0.494 | 0.272 | 0.101 0.278 0.494 0.253 0.310 0.33 0.813
4enl | 0.736 0.547 0.672 | 0.050 | 0.050 0.393 0.438 0.652 0.498 0.68 0.8
Average Score | 0.532 0.446 0.506 | 0.314 | 0.175 0.267 0.372 0.303 0.323 0.472 0.662
HGAPAM B MSA-GA M MSA-GAw/prealign MSAGA M CLUSTALW W PRRP W CLUSTALX W SAGA HDIALIGN
mHMMT u SB_PIMA = ML_PIMA # MULTALIGN
PILEUPS " RBT-GA " GAPAM
1
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Fig. 11. Graphical presentations of the experimental results on MSA-GA Name of Ref. 2 Experiments
selected datasets.
Fig. 13. Graphical presentations of the experimental results on reference 2
0.8 datasets.
0.6 .
The overall performance, from the average score in Table V,
0.4 of all methods for reference 2 is shown in Fig. 14. This figure
0.2 shows that GAPAM achieved higher average accuracy than
all of the other methods considered in this section. GAPAM
0 performed better for almost all test cases in reference 2.
GAPAM MSA-GA MSA-GA SAGA CLUSTAL W .
w/prealign b) Performance of GAPAM in Reference 3: Reference 3

Overall Performance of GAPAM & others in selected Datasets
of MSA-GA

Fig. 12. Overall performance of all methods in MSA-GA selected datasets.

contains sub-groups of sequences where the residue identities
between groups are less than 25%. In this paper, we considered
11 test cases out of 12, and the experimental results that are
illustrated in Table VI and Fig. 15 show that GAPAM found
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TABLE VII
WILCOXON SIGNED RANK TEST RESULTS FOR THE GAPAM AND OTHER METHODS

Overall Performance of GAPAM & others in Ref.2

Fig. 14.  Overall performance of all methods in reference 2 datasets.

more accurate MSAs in eight test cases, RBT-GA in 1, SAGA
in 1, PRRP in 1, and ML_PIMA in 1 test case. PRRP and
ML_PIMA found the same solution for one test case (1r69).
Fig. 15 shows that for some test cases, most of the methods
could not find any similarities in their solutions in comparison
to the reference alignments. Therefore, these methods received
zero score. PRRP and ML_PIMA achieved the same highest
score in one test case, but both received a zero score for
another test case. However, GAPAM did not obtain any zero
score.

The overall performance of all methods for this reference
is presented in Fig. 16. Although the GAPAM method did not
achieve high accuracy solutions in three test cases, the average
performance of this method was clearly better than the others
as shown in Fig. 16.

c) Statistical analysis: To study the difference between
any two stochastic algorithms in a more meaningful way, we
have performed statistical significant testing. We have chosen
a non-parametric test, Wilcoxon signed rank test [59] as it
allows us to judge the difference between paired scores when
it cannot make the assumption required by the paired-samples ¢
test, such as that the population should be normally distributed.
The results based on the best found solutions of GAPAM are

Comparing the GAPAM
Algorithms (With Respect to the BAliscore)
we | we p GAPAM is Significant | Hypothesis Test Depision
If P< 0.05 (Null Hypothesis)
MSA-GA 22 4 | 0.0004239 Yes Reject
MSA-GA w/prealign 20 6 0.003088 Yes Reject
(with MSA-GA test sets) | 21 | 5 | 0055 No Retain
CLUSTAL W 23 3 | 0.0008776 Yes Reject
PRRP 30 4 1.41e=% Yes Reject
CLUSTALX 31 3 9.276e="7 Yes Reject
. SAGA 31 3 2.81e796 Yes Reject
(with RBT-GA test sets)
DIALIGN 32 2 5.006e~%7 Yes Reject
HMMT 34 0 3.828e="7 Yes Reject
SB_PIMA 34 0 3.828¢~%7 Yes Reject
ML_PIMA 33 1 7.133e~7 Yes Reject
MULTALIGN 32 2 5.472¢7 Yes Reject
PILEUPS 33 0 | 5654797 Yes Reject
RBTGA 28 6 6.918¢0° Yes Reject
W PRRP B CLUSTALX B SAGA H DIALIGN
B HMMT W SB_PIMA ML_PIMA MULTALIGN
PILEUP8 RBT-GA GAPAM
4 e
08 === e e e e
|
06 +———(F+—+t-—1- 7} - - —14HH
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04 +——- - J _____

0.2 -
0 -
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Name of the Ref.3 Experiments
Fig. 15. Graphical presentations of the experimental results on reference 3
datasets.
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Fig. 16. Overall performance of all methods in reference 3 datasets.

presented in Table VII, where W (= W, or W_) is the sum of
ranks based on the absolute value of the difference between
two test variables. The sign of the difference between two
independent samples is used to classify cases into one of two
samples: differences below zero (negative rank W_), or above
zero (positive rank W,). As a null hypothesis, it is assumed
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that there is no significant difference between two samples.
Hence if the hypothesis test rejects the null hypothesis, then
there is a significant difference, but if it retains the null hy-
pothesis then there is no significant difference. The alternative
hypothesis is that there is a significant difference in the fitness
values of the two samples. The number of test problems is
N = 26 and 34 for MSA-GA and RBT-GA respectively,
and we used the 5% significance level. Based on the test
results/rankings, we assigned two words (“yes” for P < = 0.05
or “no” for P > 0.05) for the comparison of any two algorithms
(as shown in the fifth column), where “yes” means that the
GAPAM algorithm is significantly better than the second, and
“no” means that there is no significant difference between the
two algorithms. We tested for significant with the BAliscore
corresponding to the best found WSPM scores produced by
GAPAM, in comparison to the published BAliscore results of
the other methods

There is a significant difference when GAPAM is compared
with MSA-GA, MSA-GA w/prealign and CLUSTAL W for
the dataset used in MSA-GA, and when compared GAPAM
with PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA,
ML_PIMA, MULTALIGN, PILEUP8 and RBT-GA for the
dataset used in RBT-GA. In one case, however, there was
no significant difference with SAGA for the dataset used in
MSA-GA, as indicated by the hypothesis test decision and
the significance values in Table VII. From the experimental
observation, it is clear that GAPAM is statistically significantly
better according to the Wilcoxon signed rank test.

VI. CONCLUSION

In this paper, a new GA based progressive alignment method
(GAPAM) has been proposed to solve multiple sequence
alignment problems. This approach works with the solution
of a guide tree. To generate an initial population, two mecha-
nisms are introduced. To assess the good performance of the
algorithm, a number of the experiments tested the initial pop-
ulation, the genetic operators and the choice of an appropriate
set of parameters for the GA. An initial experiment was run to
determine the parameters, and from the experimental results,
the probability of crossover and mutation was set to 50%—50%.
A simple hill climbing method with the standard GAPAM
initial population was tested to verify the performance of the
genetic operators. Moreover, the GAPAM method was also
tested with randomly generated initial populations to verify
the performance of the proposed initial generation.

We used both the sum of pair and the weighted sum of pair
methods for the fitness function in our research. However, we
only reported the weighted sum of pair scores as the algorithm
with this method performed better than the sum of pair fitness
function.

To test our proposed approach, we considered a good
number of benchmark datasets from BAliBase 2.0, so as to
cover all the test sets of MSA-GA and RBT-GA. The proposed
method was optimized based on the weighted sum of pair
score. Therefore, the corresponding BAliscore of this solution
was used to compare with other methods, as they used BAlis-
core as their measure of the quality/accuracy of the multiple

sequence alignments. The experimental results showed that
GAPAM performed better for most of the test cases. Although
the solution of GAPAM was not always the best for some test
cases, it was always close to the best. The overall performance
of our proposed method outperformed all of the other methods
considered in this paper. The GAPAM method performed
better than the others because of its proposed initial generation,
genetic operators and parameters.

After the statistical analysis and experimental analysis, we
can safely conclude that the proposed method can effectively
solve multiple sequence alignment problems.
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