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Abstract—Microarray techniques are leading to the development of sophisticated algorithms capable of extracting novel and useful

knowledge from a biomedical point of view. In this work, we address the biclustering of gene expression data with evolutionary

computation. Our approach is based on evolutionary algorithms, which have been proven to have excellent performance on complex

problems, and searches for biclusters following a sequential covering strategy. The goal is to find biclusters of maximum size with

mean squared residue lower than a given �. In addition, we pay special attention to the fact of looking for high-quality biclusters with

large variation, i.e., with a relatively high row variance, and with a low level of overlapping among biclusters. The quality of biclusters

found by our evolutionary approach is discussed and the results are compared to those reported by Cheng and Church, and Yang et al.

In general, our approach, named SEBI, shows an excellent performance at finding patterns in gene expression data.

Index Terms—Biclustering, gene expression data, evolutionary computation.
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1 INTRODUCTION

MICROARRAY techniques may provide massive amounts
of information, which is leading to the development

of sophisticated algorithms capable of extracting novel and
useful knowledge from a biomedical point of view.
Microarray data are widely used in genomic research due
to the enormous potential in gene expression profiling,
facilitating the prognosis and the discovering of subtypes of
diseases.

The gene expression data are organized in matrices,
where rows represent genes and columns represent experi-
mental conditions. Each element in the matrix refers to the
expression level of a particular gene under a specific
condition. A basic approach to the study of expression data
consists of applying traditional statistical techniques. In
many problems, these methods have been shown to be
unable to extract relevant knowledge from data.

Clustering has been applied to gene expression data [1],
which usually refers to conditions or patients, although
genes can also be grouped in order to search for functional
similarities. However, relevant genes are not necessarily
related to every condition or, in other words, there are
genes that can be relevant for a subset of conditions [2]. On
the contrary, it is also possible to discriminate groups of
conditions by using different groups of genes. From this
point of view, clustering cannot only be addressed
horizontally (conditions) or vertically (genes), but also in
the two dimensions simultaneously. This approach, named
biclustering or subspace clustering, identifies groups of genes
that show a “similar” expression level or trend under a
specific subset of experimental conditions.

Clustering is an important task within Knowledge
Discovery in Databases (KDD), which aims to organize the

information in terms of their similarity patterns. The problem
of finding a partition of a set of objects into k groups which

optimizes a stated criterion of partition adequacy is not, in

general, straightforward. Given n examples, the number of
ways in which these examples can be partitioned into

k nonempty subsets is:

P ðn; kÞ ¼ 1

k!

Xk
j¼0

k
j

� �
ð�1Þjðk� jÞn:

An approximation to the above equation is:

P ðn; kÞ � k
n

k!
� kn�kek

ffiffiffiffiffiffiffiffi
2�k
p

:

Therefore, when we do not know a priori the number of
clusters k, the total number of evaluations is:

T ðnÞ ¼
Xn
k¼1

P ðn; kÞ:

For example, for n ¼ 8, T ð8Þ ¼ 4; 140. This gives an idea of
the complexity of clustering.

Biclustering was first introduced by Hartigan [3], as a
way to cluster simultaneously rows and columns of a

matrix, and it was named “direct clustering.” The goal was
to find biclusters with minimum variance, that ideally

provided biclusters of size 1, since they looked for constant
biclusters (constant values within the submatrix). Hartigan

tried to avoid this problem by searching for k biclusters at a

time. Later, in 2000, Cheng and Church [4] proposed the
biclustering of gene expression data, introducing the residue

of an element in the bicluster and the mean squared residue of
a submatrix. In addition, they adjusted that measure to

reject trivial biclusters by means of the row variance. Getz
et al. [5] presented the coupled two-way clustering. It uses

hierarchical clustering applied separately to each dimension
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and then they defined the process to combine both results.
Obviously, the quality of biclusters depends on the clusters
generated at each dimension, which in turn, allow us to
experiment with different types of clustering algorithms.
Lazzeroni and Owen [6] used “plaid models” in the same
context, where the concept of “layer” (bicluster) is used to
compute the values in the data matrix, which is described as
a linear function of layers. Basically, each element is seen as
a superposition of layers. Yang et al. [7] presented �-clusters,
and a year later, the same authors improved the Cheng and
Church’s approach in FLOC [8], paying attention to missing
values. FLOC follows the same technique as Cheng and
Church’s algorithm, by adding/removing each row/col-
umn to a set of initial biclusters, improving its quality
iteratively. Also, in 2002, Tanay et al. [9] identified
biclusters by means of a bipartite graph-based model and
using a greedy approach to add/remove vertexes in order
to find maximum weight subgraphs, which are related to its
statistical significance.

Another approach is pattern-based clustering, that
captures the similarity of the patterns exhibited by a
bicluster. In general, given a set of objects, a subset of these
objects form a pattern-based cluster if these objects follow a
similar pattern in a subset of dimensions. Wang et al. [10]
proposed a depth-first algorithm for detecting pattern-
based clusters. In order to speed up the process and to
avoid the repetition of computations, the algorithm uses a
suffix tree to efficiently enumerate the possible combina-
tions of row and column sets that represent a bicluster. Liu
and Wang [11] also proposed an exhaustive bicluster
enumeration algorithm, which is based on a model that
generalizes the order preserving submatrix model [12]. The
objective of finding all biclusters that, after column
reordering, represent coherent evolutions of the symbols
in the matrix is achieved by using a pattern discovery
algorithm inspired in sequential pattern mining algorithms
[13]. Another algorithm that uses the pattern-based cluster-
ing model is proposed in [14]. This algorithm mines only
the maximal pattern-based clusters. It conducts a depth-
first, divide and conquer search and prunes unnecessary
branches smartly.

The biclustering problem is even more difficult than
clustering, as we tried to find clusters using two dimensions,
instead of one. In fact, the problem of finding a minimum set
of biclusters, either mutually exclusive or overlapped, is a
generalization of another problem related to covering
bipartite graph, which has been shown to be NP-hard [15].
Therefore, the cost of exploring exhaustively all the possible
partitions of the search space into nonoverlapped biclusters
would be T ðNÞ � T ðMÞ, whereN is the number of genes and
M is the number of conditions in the data set.

In this work, we address the biclustering problem with
evolutionary computation, which has been proven to have
an excellent performance on highly complex optimization
problems.

This approach is motivated by two major characteristics
of evolutionary algorithms: their excellent exploration
power, that gives them the possibility of escaping from
local optima and their ability to work well when solutions
to a problem contain complex interacting parts, where the

impact of each part on the overall solution may be difficult
to model [16]. This is true in biclustering, where the genes
and conditions that are included in the biclusters interact
with each other in order to determine the quality of the
bicluster. Moreover, evolutionary computation provides a
searching method motivated by an analogy with biological
evolution, which is known to be a successful, robust method
for adaptation within biological systems.

Our approach, named SEBI (for Sequential Evolutionary
BIclustering) is based on evolutionary algorithms and
searches for biclusters following a sequential covering
strategy. As the algorithm partially uses the squared mean
residue, the results have been compared to those of Cheng
and Church. In expression data analysis, the most im-
portant goal may not be finding the maximum bicluster or
even finding a bicluster covering for the data matrix. It is
more interesting to find a set of genes showing strikingly
similar up-regulation and down-regulation under a set of
conditions. A low mean squared residue score plus a large
variation from the constant may be a good criterion for
identifying these genes and conditions. Therefore, our goal
is to find biclusters of maximum size, with mean squared
residue lower than a given �, with a relatively high row
variance, and with a low level of overlapping among
biclusters.

Among the biclustering algorithms that perform a
greedy search, also FLOC performs some stochastic steps.
In fact, FLOC first determines which set of actions will lead
to the highest gain. The actions are then applied with a
probability proportional to their associated gain. SEBI does
not use any greedy search phase; the variation operators it
uses are completely stochastic. The search in SEBI is lead
by the fitness function, which is computed only after the
application of the variation operators. Moreover, FLOC
finds all the biclusters simultaneously, while SEBI adopts a
sequential covering strategy. FLOC is also included in the
experimental results section.

In [17], an evolutionary algorithm (EA) has been used for
finding biclusters in gene expression data. The same
authors in [18] use the order preserving submatrix method
by Ben-Dor et al. [12] inside the EA.

The paper is organized as follows: In Section 2, the
definitions related to biclustering are presented. An intro-
duction to Evolutionary Computation is given in Section 3.
The description of the algorithm is illustrated in Section 4,
together with all the evolutionary features and the evalua-
tion of the quality of a bicluster. Experimental results are
discussed in Section 5, comparing the quality to those
generated by the algorithms presented by Cheng and
Church, and Yang et al. Finally, the most interesting
conclusions are summarized in Section 6.

2 THE MODEL OF BICLUSTERS

In this section, we present the model of bicluster, and a way
for assessing the quality of a bicluster. We follow the
biclustering model proposed in [4].

A bicluster is defined on a gene-expression matrix. Let
G ¼ fg1; . . . ; gNgbe a set of genes andC ¼ fc1; . . . ; cMga set of
conditions. The data can be viewed as an N �M expression
matrix EM. EM is a matrix of real numbers, with possible
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null values, where each entry eij corresponds to the logarithm

of the relative abundance of the mRNA of a gene gi under a

specific condition cj. The logarithmic transformation is used

to convert doubling or other multiplicative changes of the

relative abundance into additive increments.
A bicluster essentially corresponds to a submatrix that

exhibits some coherent tendency. Each bicluster can be

identified by a unique set of genes and conditions, that

determine the submatrix. Thus, a bicluster is a matrix I � J ,

denoted as ðI; JÞ, where I and J are a set of genes (rows)

and conditions (columns), respectively, and jIj � jNj and

jJj � jMj. We define the volume of a bicluster ðI; JÞ as the

number of elements eij such that i 2 I and j 2 J .

Example 1. Suppose the expression matrix EM consists of

10 genes and eight conditions, like the one represented in

Fig. 1, where the genes represent the rows of the matrix

and the conditions represent the columns of the matrix.

Then, a bicluster defined over the expression matrix EM

could be ðf1; 3; 5g; f2; 4; 7gÞ, thus consisting of genes

g1; g3; g5 and of conditions c2; c4; c7. The volume of this

bicluster is 9. In Fig. 1, the elements belonging to the

bicluster are highlighted and between brackets.

In the following, we give some definitions related to the

measure used here for assessing the quality of a bicluster,

most of which are taken from [8].

Definition 1. Let ðI; JÞ be a bicluster, then we define the base of

a gene gi as eiJ ¼
P

j2J eij

jJ j . In the same way, we define the base

of a condition cj as eIj ¼
P

i2I eij

jIj . The base of a bicluster is the

mean of all the entries contained in ðI; JÞ, eIJ ¼
P

i2I;j2J eij

jIj�jJ j .

Note that in the above definition, eiJ and eIj corresponds

to the mean of the ith row and of the jth column of the

bicluster ðI; JÞ, respectively. In order to quantify the

difference between the actual value of an entry and the

expected value of an entry predicted from the correspond-

ing gene base, condition base, and the bicluster base, we

introduce the concept of residue.

Definition 2. The residue of an entry eij of a bicluster ðI; JÞ is
rij ¼ eij � eiJ � eIj þ eIJ .

The residue is an indicator of the degree of coherence of
an element with respect to the remaining ones in the
bicluster, given the tendency of the relevant gene and the
relevant condition. The lower the residue, the stronger the
coherence. To assess the quality of a bicluster, the residue of
the bicluster can be defined as the squared mean residue of
all specified elements, as in [4].

Definition 3. The mean squared residue of a bicluster ðI; JÞ is

rIJ ¼
P

i2I;j2J r
2
ij

jIj�jJ j .

The mean squared residue is the variance of the set of all
elements in the bicluster, plus the mean row variance and
the mean column variance. The lower the mean squared
residue, the stronger the coherence exhibited by the
bicluster, and the better the quality of the bicluster. If a
bicluster has a mean squared residue lower than a given
value �, then we call the bicluster a �-bicluster. The problem
of finding the largest square �-biclusters is NP-hard [4]. In
addition to the mean squared residue, we may prefer the
row variance to be relatively large to reject trivial bicluster.

Definition 4. Let ðI; JÞ be a bicluster. The row variance of

ðI; JÞ is defined as varI;J ¼
P

i2I;j2J ðeij�eiJ Þ
2

jIj�jJ j .

By using the row variance as an accompanying score, we
want to guarantee that the bicluster captures genes
exhibiting fluctuating yet coherent trends under some set
of conditions.

Our goal is to find biclusters of maximum size, with
mean squared residue lower than a given �, with a
relatively high row variance, and with a low level of
overlapping among biclusters.

3 EVOLUTIONARY COMPUTATION

In this section, we provide the reader with the basic
principles of Evolutionary Computation (EC). For a detailed
introduction to EC, the reader can refer to [16], [19], [20].

EC is a population-based stochastic iterative optimiza-
tion technique based on the Darwinian concepts of
evolution. Inspired by these principles, like survival of the
fittest and selective pressure, EC tackles difficult problems
by evolving approximate solutions of an optimization
problem inside a computer. An algorithm based on EC is
called an Evolutionary Algorithm (EA).

Given an optimization problem, all EAs typically start
from a set, called population, of random (candidate)
solutions. These solutions are evolved by the repeated
selection and variations of more fit solutions, following the
principle of the survival of the fittest. We refer to the
elements of the population as individuals or as chromo-
somes, which represent candidate solutions. Solutions can
be encoded in many different ways. A typical example is
represented by binary string encoding, where each bit of the
string has a particular meaning. In general, with the term
phenotype we refer to an object forming a possible solution
within the original context, while its encoding is called
genotype. To each genotype must correspond at most one
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Fig. 1. Expression matrix for Example 1. Each row represents a gene gi
and each column represents a condition cj. Elements belonging to the

bicluster given in Example 1 are between brackets and highlighted.



phenotype, so that the chosen encoding can be inverted, i.e.,

genotypes can be decoded.
Individuals are typically selected according to the quality

of the solution they represent. To measure the quality of a

solution, a fitness function is assigned to each individual of

the population. Hence, the better the fitness of an

individual, the more possibilities the individual has of

being selected for reproduction and the more parts of its

genetic material will be passed on to the next generations.
The selected individuals reproduce by means of cross-

over and mutation. In simple terms, crossover swaps some

genetic material between two or more individuals, while

mutation changes a small part of the genetic material of an

individual to a new random value. From the reproduction

phase, new offspring are generated. Offspring compete

with the old individuals for a place in the next generation. If

the best individual is always allowed to survive to the next

generation, we say that elitism is applied.
In this way, EAs can efficiently explore the space of

possible solutions of an optimization problem. This space is

called search space, and it contains all the possible solutions

that can be encoded. EAs have been shown to be efficient in

searching in huge spaces. The stochastic operators used

allow EAs to search for possible solution in an efficient way.

For these reasons, EAs represent a valid alternative to

greedy heuristic.
EC has been applied to find solutions of problems in a

variety of domains, e.g., planning [21], design [22], schedul-

ing [23], [24], simulation and identification [25], control [26],

and classification [27], [28], [29], [30].
The problem of finding a set of biclusters with some

desirable features on an expression matrix can be seen as a

search problem in the space consisting of all the possible

biclusters than can be obtained from the expression matrix.

In the introduction, we showed the complexity of this

problem. For EAs adopting a binary encoding, this problem

has a huge search space, and it is not easy as it might seem
at first sight. This aspect will be analyzed in Section 4.1.

4 DESCRIPTION OF THE ALGORITHM

The algorithm adopts a sequential covering strategy: a
procedure called EBI (Evolutionary BIclustering) is called
several times, until an end condition is met. EBI takes as input
the expression matrix and the � value, as a threshold for the
mean squared residue. EBI returns either a bicluster with
mean squared residue lower than � or nothing. The returned
bicluster is stored in a list called Results, and EBI is called
again. The end condition is also met when EBI is called a
maximum number of times. When the end condition is met,
the list Results is returned. A general scheme of the sequential
covering algorithm is given in Fig. 2a.

In the scheme of Fig. 2a, after that EBI returns a
bicluster, weights associated with the expression matrix are
adjusted in order to avoid overlapping among biclusters as
much as possible. The weight of an element in the
expression matrix depends on the number of biclusters in
Results containing the element. The more biclusters cover an
element, the higher the weight of the element will be. The
weight wp associated to an element eij of the expression
matrix is:

wpðeijÞ ¼
0 if jCovðeijÞj ¼ 0;P

n2N;m2M e�jCovðenmÞj

e�jCovðeijÞj
if jCovðeijÞj > 0;

(
ð1Þ

where N and M are the number of rows and the number of
columns of the expression matrix, respectively, and jCovðeijÞj
is the number of biclusters in Results containing eij.

In EBI, the weights are taken into consideration when
the quality of biclusters is assessed, as described in
Section 4.2. In this way, we want to bias the search toward
biclusters that do not overlap with already found biclusters.
wpðeijÞ is the inverse of the weight used in the EWUS
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residue of a bicluster encoded in the individual X.



selection operator [31], where the weights are assigned to
training examples inside a classifier, in order to bias the
search toward a subset of training examples.

EBI implements an EA, whose scheme is illustrated in
Fig. 2b. The aim of EBI is to find �-biclusters with maximum
volume, with a relatively high row variance, and minimiz-
ing the effect of overlapping among biclusters.

The first operations performed by EBI are the initializa-
tion and the evaluation of the population.

Initialization of the population is an important aspect.
Typically, in GAs, the population is randomly initialized. In
our opinion, this is not a good strategy to be used in SEBI. In
fact, in this case, initial individuals will have a similar
dimension, since each bit has the same probability of being
set to one. Moreover, there would be no guarantee to obtain
biclusters that have a low mean squared residue. These two
aspects would then render the genetic search less efficient,
since the initial biclusters will have a high and similar
dimensionality and probably low quality. We decided to
have initial individuals representing biclusters of dimension
one because these biclusters have a mean squared residue
equal to zero. In this way, the design of variation operators
for growing biclusters was straightforward. However, other
initialization strategies may be adopted. For example, the
population may be initialized with bicluster found by a
greedy search strategy.

In the loop, a population of biclusters is evolved by
means of the repeated application of selection, crossover,
and mutation. A number of individuals are selected to
become parents. Selected pairs of parents are recombined
by a crossover operator with a given probability pc (default
value 0.85), and the resulting offspring is mutated with a
probability pm (default value 0.2). The process is repeated
with the new generation of offspring, until a maximum
number of generations has been reached. Elitism is applied
with a probability pe (default value 0.9). At the end of the
evolutionary process, if the best individual encodes a
�-bicluster, then it is returned; otherwise, EBI does not
return anything. The best individual is the one having the
best fitness in the final population.

In this paper, we use the default values of SEBI for the
parameter settings that control the evolutionary process,
i.e., population size, number of generation, crossover, and
mutation probabilities. The two data sets used have
different characteristics, and, nevertheless, SEBI obtained
good results with the default parameter setting.

In the following, we address various aspects of the EA
implemented in EBI. In particular, we describe how
biclusters are encoded into individuals, the fitness function,
and the genetic operators adopted for selecting parents and
producing offspring. We conclude this section with some
considerations about the parameter setting of SEBI (the
sequential covering strategy that includes the evolutionary
algorithm EBI).

4.1 Encoding of Biclusters

Each individual of the population encodes one bicluster.
Biclusters are encoded by means of binary strings of
length N þM, where N and M are the number of rows
(genes) and of columns (conditions) of the expression
matrix, respectively. Each of the first N bits of the binary

string is related to the rows, in the order in which the
bits appear in the string. In the same way, the remaining
M bits are related to the columns. If a bit is set to 1, it
means that the relative row or column belongs to the
encoded bicluster; otherwise, it does not. This encoding
presents the advantage of having a fixed size, thus
allowing the use of standard variation operators.

Example 2. If we want to encode the bicluster proposed in
Example 1, the binary string consists of 18 bits (10 for the
genes and eight for the conditions). The genotype of the
bicluster will then be:

1010100000j01010010;

where the symbol j is only used for delimiting the bits
relative to the rows from the bits relative to the columns.

Note that the initial population consists of biclusters
containing only one element. The genotype of such
biclusters is a binary string where only two bits are set to
1, one for the row and one for the column belonging to the
bicluster. In the initialization phase, these two bits are
randomly chosen. The remaining bits are set to 0.

As it was pointed out earlier, the complexity of the
search space is very high, as the size of the search space has
an exponential relationship with the length of the indivi-
duals. For an individual of length L, the size of the search
space is 2L, that is, 10L�lg102. For the two data sets under
study in this paper, the size of the search space is amazingly
huge (see Table 1), and the search for solutions is a very
hard process even for an EA.

4.2 Fitness Function

The fitness function rewards individuals encoding biclus-
ters with low mean squared residue, with high volume and
row variance, and covering elements of the expression
matrix that are not covered by biclusters found by previous
executions of EBI. To this aim, the following fitness
function is used:

fðXÞ ¼ residueðXÞ
�

þ 1

row varianceðXÞ þ w dþ penalty:

ð2Þ

In the above formula, X is an individual, residueðXÞ is
the mean squared residue of the encoded bicluster,
row varianceðXÞ is the row variance of X.

penalty ¼
X

i2I;j2J
wpðeijÞ;

where I, J are the rows and columns belonging to bicluster,
respectively, and wp is defined in (1). The use of penalty
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TABLE 1
Length of Individuals in the Evolutionary Population and

Corresponding Size of the Search Space for the Yeast and
Human Data Sets



allows us to avoid overlapping among biclusters. w d is

equal to wV � ðwr � �
rowX
þ wc � �

colX
Þ, where wV is a weight used

for giving more or less importance to the volume of the

bicluster (default value is 1), rowX and colX are the number

of rows and columns of the encoded bicluster, respectively,

and wr; wc are weights assigned to the number of rows and

to the number of columns, respectively. This expression was

empirically obtained as a way to balance the influence of the

large number of genes in comparison to the small number

of conditions in the fitness function. By varying the values

of wV , wr, and wc, we can bias the genetic search in such a

way to prefer biclusters having great volume, involving

more or less genes or conditions. The influence of the factor

wd (and particularly of wr and wc) on the results is analyzed

in Section 4.4, and particularly in Figs. 3 and 4.
If residueðXÞ > �, then the value of residueðXÞ

� is greater

than 1; otherwise, it is less than 1. If the row varianceðXÞ is

much greater than 1, then the factor 1
1þrow varianceðXÞ becomes

very small. In this way, the smaller the residue and the

larger the row variance are, the smaller the fitness value,

i.e., the better the quality of that bicluster is.
The final objective of the algorithm EBI is to minimize

the fitness.

4.3 Genetic Operators

Individuals are selected for reproduction with a tournament
selection operator. A number of individuals are randomly
selected, and the one with lower fitness is chosen as elite.
The number of individuals selected determines the size of
the tournament. The size of the tournament can be supplied
by the user, and its default value is 2. Elitism is applied with
a given probability (default value 0.9).

Three crossover operators are used: one-point, two-
point, and uniform crossover. In short, one-point crossover
selects a point inside the two strings and produces the
offspring by exchanging the substrings of the parents. Two-
point crossover works in the same way, but selects two
points inside the two strings. Uniform crossover combines
bits sampled uniformly from the two parents. If crossover
has to be applied, one of the three operators is applied with
equal probability.

The crossover operators produce biclusters containing
rows and columns that were present in the parents, which
represented good biclusters at a given point of the
evolutionary process.

The basic principle behind crossover is simple: By
mating two individual encoding biclusters with different
but desirable features, we can produce a bicluster that
combines both of those features. In other words, if crossover
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Fig. 3. Influence of wc on the residue, volume, and the number of genes and conditions for the 100 biclusters obtained from the yeast data set

(wr ¼ 1.). (a) Influence on the number of genes and conditions. (b) Influence on the residue and volume.

Fig. 4. Influence of wc on the residue, volume, and the number of genes and conditions for the 100 biclusters obtained from the human data set

(wr ¼ 1.). (a) Influence on the number of genes and conditions. (b) Influence on the residue and volume.



is applied to two biclusters containing rows and columns
identifying two good biclusters, columns and rows may be

combined in such a way that a better bicluster is obtained.
This new bicluster will contain parts of both parents. It is
accepted that some offspring created by crossover may have

undesirable combinations of traits. In this case, they will
have a low probability of being selected for reproduction,

and to survive to next generations. With the use of
crossover, diversity is maintained in the population, so that

more biclusters can be searched.
Three mutation operators are employed: standard muta-

tion operator, a mutation operator that adds a row, and a

mutation that adds a column to the bicluster. The last two
operators are employed for giving more possibility of
growing to biclusters when mutated.

Mutation is a highly random operation, and for this
reason it is applied with a low probability. In particular,
with the last two mutation operators, we want to give more

possibilities to biclusters to expand. It is not guaranteed that
the addition of a row or of a column will be beneficial for

the bicluster, e.g., its mean square residue may increase.
However, there is the possibility that a random mutation

could lead to the discovery of a good bicluster. If this is not
the case, then the bicluster has few possibilities of being
selected for reproduction, and transmitting in this way part

of its genetic material to next generations. Mutation
operators guarantee that the space of the biclusters is

connected, i.e., that all the biclusters can be reached during
the search. Thus, the use of mutation is important because it

allows to explore more extensively the space of all the
biclusters that can be obtained from a given expression
matrix.

4.4 Parameters Setting

As most EAs, SEBI uses several parameters that control the

genetic search, e.g., crossover and mutation probabilities,
population size, etc. In general, for an EA to perform well,
the issue of setting the parameter values used to guide the

genetic search is critical.
Typically, in order to determine a good parameter setting

for an EA on a given problem, a number of preliminary

runs are performed with different parameter settings. This
could be a time consuming operation, and is not guaranteed

to lead to the optimal parameter setting, since the number
of possible combination of parameters values is very high,

and many runs with different random seeds should be
performed.

In this paper, we have used the standard values for the

EA, which are shown in Table 2. However, it is necessary to
balance the effect of the great difference between the number
of genes and conditions. As this ratio is not the same for

different data sets, in principle the EA might not have good
performance for inappropriate choices of wr and wc. As we

show in Figs. 3 and 4, the influence of an incorrect setting for
wr andwc is not very relevant. In Fig. 3b, the best value forwc
is 10. However, as it is shown in Fig. 4b, wc could be in
½10; 15�. We preferred biclusters with small number of genes
(generally, small volume) and low mean squared residue, so

the value wc ¼ 10 fulfills this requirement.

5 EXPERIMENTAL RESULTS

In order to assess the quality of the proposed method for
finding biclusters in expression data, we conducted
experiments on two well-known data sets. The first data
set is the yeast Saccharomyces cerevisiae cell cycle expres-
sion data set originated from [32]. The expression matrix
contained in this data set consists of 2,884 genes and
17 experimental conditions. The second data set is the
human B-cells expression data originated from [33]. The
human data set consists of an expression matrix of
4,026 genes and 96 conditions. The two data sets are
taken from [4], where the original data is preprocessed,
replacing missing values with random values. However, it
is known the existing risk that these random numbers can
affect the discovery of biclusters [7].

The values of � for the two data sets are taken from [4],
which are calculated from the clustering experiments done
in [34]. For the yeast data set � was set to 300, and for the
human data set to 1; 200.

All the experiments were performed using the same
parameter setting of the EA (Table 2). When the search
space size is huge, the choice of a correct set of parameter
values is very important, and might need some trials.
However, what is truly critical is the definition of a precise
fitness function, as the parameter values will only help to
reach the goal defined by that function, i.e., the evolutionary
algorithm might need much more time to converge, and the
results might not be so good. In SEBI, the size of the
population is 200 and the number of generations is 100.
These are very tiny values for the parameters taking into
account the size of the search space illustrated in Table 1. It
is important to note that every time EBI is called, it runs
20,000 evaluations of potential biclusters, and the size of the
search space is about 101000. Thus, the number of candidate
biclusters evaluated by EBI is ridiculous in comparison to
the number of potential biclusters. Therefore, the role of
genetic operators is important to correctly guide the search
towards good solutions.

5.1 Yeast Data Set

In Fig. 5, 12 out of 100 biclusters found by EBI on the yeast
data set are shown. The first bicluster shown, labeled 11 is the
bicluster found with the first call of EBI. As in [4], biclusters
like this one need to be discovered, then more “interesting”
biclusters may emerge. From a visual inspection of the other
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TABLE 2
Parameter Values of SEBI



biclusters proposed in Fig. 5, one can notice that the genes

present a similar behavior under a set of conditions. This is

especially evident in the bicluster labeled 681, where the

variance is very high. Many biclusters found on the yeast

data set contains all 17 conditions, indicating that these

conditions form a good cluster, with respect to the genes

included in the biclusters. Of the 12 biclusters shown in Fig. 5,

five contain all 17 conditions. A similar result was also

obtained in [4]. In general, the evolutionary technique

performs very well, finding several groups of genes with

the same behavior although shifted. For instance, the

bicluster 481 contains three groups of genes, two the bicluster

641 and other two the bicluster 981. Generally, all the

biclusters but the first one describe two or more groups of

genes along the conditions, which vary from 13 to 17.

Biclusters 411 and 981 are interesting because they differ-

entiate one gene from the others, although all the genes seem

to have the same trend. SEBI shows an excellent perfor-

mance at finding shifting patterns (see biclusters 481 or 681)

and scaling patterns (see biclusters 411 and 431).

Information about these biclusters is given in Table 3. All
the biclusters have residues less than 300. In fact, they are
less than 220, so the evolutionary approach is very precise
at adjusting this value. In addition, the row variance is
considerably high for all the biclusters except the first one,
which includes 82 genes. Bicluster 681 is the biclusters
characterized by the highest row variance. It is interesting to
notice that this is also the bicluster with the lowest residue.

In order to illustrate the interesting performance of our
approach, the 100 biclusters obtained by the EA are
represented in Fig. 6. Biclusters are enumerated on the
X-axis, while in the Y-axis the value of the mean squared
residue and the volume are reported. The EA is very stable
at obtaining biclusters with a prefixed value for the mean
squared residue, under the value of 300, during all the runs.
However, it is very conservative at producing biclusters
with great volume, since the averaged size of the biclusters
is decreasing along the process, becoming almost stabilized
at the end.

In Fig. 7, three graphs relative to a typical run of EBI on
the yeast data set are shown. We show the run relative to a
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Fig. 5. Twelve biclusters found for the yeast data set. All the mean squared residues of the biclusters are lower than 220.



first call of EBI because in this run the weights associated to
the elements of the expression matrix are all equal to zero.
In this way, the fitness is of easier interpretation. In fact, in
the first call of EBI, only the residue, the row variance, and
the volume of the bicluster are considered in the fitness
function. In Fig. 7a, the average fitness and the best fitness
present in the population at each generation are shown. It
can be noticed that the fitness decreases rapidly in the first
generations, until about the 23rd generation, and then it
keeps decreasing, although more slowly. This means that
the evolutionary algorithm converges quickly to a local
optimum. In Fig. 7b, the average volume and the best
volume of the biclusters encoded in the population are
given at each generation. We can notice that the average
volume of the biclusters increases constantly, meaning that
the fitness function is successful in promoting biclusters
with greater volume. The best volume also increases
constantly on average. In Fig. 7c, the average mean squared
residue and the lowest residue are given at each generation.
In the first generations, the average residue increases. This
is due to the fact that in the first generations, the biclusters
are very small, and when growing, their residues increase.
After some generations, the residue becomes almost stable,
with a value close to 200. The residue does not decrease
because the fitness function gives more importance to the
volume of a bicluster when its mean squared residue is
lower than �. Until about the 20th generation, the best mean
squared residue is 0. This is due to the fact that until that
generation some bicluster containing only one element are
still present in the population.

The 100 biclusters obtained by SEBI cover 38:14 percent
of the elements of the expression matrix, 43:55 percent of
the genes, and 100 percent of the conditions. In [4], the
100 biclusters covered 2,801, or 97:12 percent of the genes,

and 100 percent of the conditions, and 81:47 percent of the
cells in the matrix. These results confirm the effectiveness of
the adopted method for avoiding overlapping. Each call to
EBI on the yeast data set requires about 70 seconds on a
Pentium IV 3GHz.

5.2 Human Data Set

Fig. 8 shows 12 out of 100 biclusters found for the human
data set (Table 4 collects information for these biclusters).

The first bicluster contains 37 genes and 56 conditions.
The second and third biclusters are still very general, with
18� 59 and 14� 64 genes and conditions, respectively.
From bicluster 501, we find a more specific and interesting
group of genes, the trend of which is more defined and the
row variance is high. Bicluster 891 presents a high row
variance for six genes and 49 conditions, the same as
bicluster 971, although in this case with 62 conditions and
the highest row variance. The most interesting bicluster is
the one labeled 891. This bicluster contains six genes
showing strikingly similar behavior under 49 conditions.

The 100 biclusters obtained by SEBI are represented in
Fig. 9. As in Fig. 6, the EA is very stable at obtaining
biclusters with a prefixed value of the mean squared
residue, under the value of 1,200, during all runs. However,
the averaged size of the biclusters is decreasing along the
process, stabilizing around 400. The value of wc slightly
varies this size.

In Fig. 10, three graphs relative to a typical run of the
algorithm on the human data set are shown. For the same
reasons explained for the yeast data set, we show the run
relative to a first call of EBI. In Fig. 10a, at each generation
the average and best fitness are shown. It can be seen that the
fitness of the individuals decreases rapidly until about
generation 40, and then it keeps on decreasing but more
slowly. The situation is different as far as the volume of the
bicluster is concerned, as can be seen in Fig. 10b. The average
volume of the biclusters increases slowly until about the
25th generation, and after this point, it increases very
rapidly. The best volume does not increase constantly, and
sometimes it decreases. This is due to the fact that elitism is
applied with a given probability, so in some generations, the
best individual can be lost, and this can explain the
decrements in the graph. The population evolves constantly
even if after about 50 generations the individuals evolve
more slowly. In Fig. 10c, the average mean squared residue
and the lowest mean squared residue at each generation are
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TABLE 3
Information about Biclusters of Fig. 5

In the first column, the identifier of each bicluster is reported. The
second and third columns report the number of rows (genes) and of
columns (conditions) of the bicluster, respectively, the fourth column
reports the mean squared residues, and the last column reports the row
variance of the biclusters.

Fig. 6. Evolution of the mean squared residue and the volume for the

100 biclusters obtained by SEBI on the yeast data set.



shown. Until about the 24th generation the lowest residue is

0. However, the average residue increases rapidly in the first

eight generations, then decreasing quickly until about the

40th generation. After this point, it becomes almost stable,

with a value close to �. The lowest residue increases until it

reaches a value close to 1,200, i.e., � for this data set. This is

due to the fact that in the fitness function, if the residue is

lower than �, then the volume of the bicluster has more

importance. The evolutionary algorithm shows an excellent

performance in this data set, as it controls the residue

through generations, and produces biclusters with high row

variance.
All the biclusters found on the human data set cover

34:07 percent of the elements of the expression matrix,
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Fig. 7. Graphs relative to a typical run of EBI on the yeast data set. In (a), the average and best fitness at each generation are shown. In (b), the

average and best volumes are shown for each generation. In (c), the average residue and the lowest residue at each generation are plotted.

Fig. 8. Twelve biclusters found for the human data set. All the mean squared residues of the biclusters are lower than 1,200.



covering 38:23 percent of the genes and 100 percent of the
conditions. In [4], the first 100 biclusters from the human
data covered 3; 687, or 91:59 percent of the genes,
100 percent of the conditions and 36:81 percent of the
cells in the data matrix. As for the yeast data set, this
result confirms the effectiveness of assigning weights to

the elements of the expression matrix in order to avoid
overlapping. Each call to EBI on the human data set
requires about 200 seconds on a Pentium IV 3GHz.

5.3 Comparison

In Table 5, we compare the performance of SEBI, with that
of Cheng and Church’s algorithm (henceforth CC) and the
algorithm FLOC by Yang et al. [35] for what concerns the
average residue and the average dimension of the biclusters
found. We can see that CC and FLOC are capable of finding
biclusters characterized by a higher volume than the ones
found by SEBI. This is probably due to the overlapping
policy adopted by SEBI. In fact, the first biclusters found by
SEBI have volumes comparable with those of the biclusters
found by CC or FLOC. After some iterations, when the most
trivial biclusters have been found, SEBI focuses on
elements of the expression matrix that are not contained
in already found biclusters. However, after CC has found a
bicluster, the covered elements of the expression matrix are
substituted by randomly generated values, in the range of
the original data. This may cause the biclusters to overlap
much more than in SEBI, where overlapping is avoided as
much as possible. As far as the residue is concerned, the
results obtained by the two systems are comparable on the
yeast data set, while for the human data set CC, on average,
is able to find biclusters with a lower residue (Yang et al.
did not report results for human data set.). However, the
standard deviation of CC is much higher than that of SEBI,
meaning that SEBI has a more stable behavior. FLOC
improves CC on the yeast data set, but it is more general at
finding biclusters than SEBI, which is much more specific
and the biclusters therefore involve less number of genes. In
short, the biclusters found by CC and FLOC are character-
ized by a lower row variance than those found by SEBI,
although they have higher volumes, so many of them are
not very interesting.

6 CONCLUSIONS

In this paper, we have introduced an algorithm based on
EC, called SEBI, for finding biclusters on expression data.
The proposed algorithm adopts a sequential covering
strategy, and an EA in order to find biclusters. To avoid
overlapping among biclusters, a weight is assigned to each
element of the expression matrix. Weights are adjusted each
time a bicluster is found. This is different from other
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TABLE 4
Information about Biclusters of Fig. 8

In the first column, the identifier of each bicluster is reported. The
second and third columns report the number of rows (genes) and of
columns (conditions) of the bicluster, respectively, the fourth column
shows the mean squared residue, and the last column reports the row
variance of the biclusters.

Fig. 9. Evolution of the mean squared residue and the volume for the

100 biclusters obtained sequentially by SEBI on the human data set.

Fig. 10. Graphs relative to a typical run of EBI on the human data set. In (a), the average and best fitness at each generation are shown. In (b), the

average and best volumes are shown for each generation. In (c), the average residue and the lowest residue at each generation are plotted.



methods, which, for instance, substitute covered elements
with random values. Experimental results confirm the
quality of the proposed method for avoiding overlapping
among biclusters.

It is interesting to notice that the default parameter setting
of SEBI was adopted on both data sets used in the empirical
experimentations. Other runs with different parameter
settings were performed, but the results were not signifi-
cantly different from those presented in this paper.

We can conclude that SEBI is successful in finding sets
of genes that show strikingly similar up-regulations and
down-regulations under a set of experimental conditions.
This is confirmed, for instance, by the results on the human
data set, where SEBI could find biclusters consisting of
genes with a very similar behavior under a set of
conditions. The quality of biclusters found by our evolu-
tionary approach is discussed and the results are compared
to those reported by Cheng and Church, and Yang et al. In
general, SEBI shows an excellent performance at finding
shifting and scaling patterns in gene expression data.

In short, Evolutionary Computation represents a useful
framework for addressing the challenges of gene expression
data analysis.
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[13] J. Hipp, U. Güntzer, and G. Nakhaeizadeh, “Algorithms for
Association Rule Mining—A General Survey and Comparison,”
SIGKDD Explorations Newsletter, vol. 2, no. 1, pp. 58-64, 2000.

[14] J. Pei, X. Zhang, M. Cho, H. Wang, and P.S. Yu, “Maple: A Fast
Algorithm for Maximal Pattern-Based Clustering,” Proc. Third
IEEE Int’l Conf. Data Mining, p. 259-266, 2003.

[15] J. Orling, “Containment in Graph Theory: Covering Graphs with
Cliques,” Nederl. Akad. Wetensch. Indag. Math., vol. 39, pp. 211-218,
1977.

[16] A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing.
Springer-Verlag, 2003.

[17] S. Bleuler, A. Preli�cc, and E. Zitzler, “An EA Framework for
Biclustering of Gene Expression Data,” Congress on Evolutionary
Computation (CEC-2004), pp. 166-173, 2004.

[18] S. Bleuler and E. Zitzler, “Order Preserving Clustering over
Multiple Time Course Experiments,” Proc. EvoWorkshops 2005,
pp. 33-43, 2005.
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