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Hyperinteractive Evolutionary Computation
Benjamin James Bush and Hiroki Sayama, Member, IEEE

Abstract—We propose hyperinteractive evolutionary compu-
tation (HIEC), a class of IEC in which the user actively
chooses when and how each evolutionary operator is applied.
To evaluate the benefits of HIEC, we conducted three human-
subject experiments. The first two experiments showed that HIEC
is associated with a more positive user experience and produced
higher quality designs. The third experiment demonstrates the
potential of HIEC as a research tool with which one can record
the evolutionary actions taken by human users. Implications,
limitations, and future directions of research are discussed.

Index Terms—Collaborative work, computer interface, human
factors, interactive computing, interactive evolutionary computa-
tion.

I. Introduction

EVOLUTIONARY computation has been successfully
used to optimize a large class of ill-behaved or otherwise

intractable objective functions. The majority of these evolu-
tionary methods require an explicit or algorithmic description
of a fitness function with which to evaluate the quality of
potential solutions (henceforth referred to as “individuals”).
However, there are many fitness functions, such as those which
involve aesthetics, for which no such explicit or algorithmic
description is easily obtained.

Interactive evolutionary computation (IEC) is a derivative
class of evolutionary computation which incorporates
interaction with human users. A comprehensive review of
IEC theory and application was given by Takagi [1]. Most IEC
applications fall into a category known as “narrowly defined
IEC” (NIEC) [1]. In NIEC, the task of fitness evaluation
is outsourced to human users. For example, a user may be
presented with a visual representation of the current generation
of individuals. The user is then prompted to provide fitness
information about some or all of the individuals. The computer
in turn uses this fitness information to produce the next gen-
eration of individuals through the application of a predefined
sequence of evolutionary operators [1], as illustrated in Fig. 1.

As a design tool, NIEC has some disadvantages. One set
of disadvantage stems from the confinement of the user to the
role of selection operator. Creative users who are accustomed
to a more highly involved design process may find the expe-
rience to be tedious, artificial, and frustrating. This issue has
been addressed in previous work. For example, Bentley and
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O’Reilly [2] stressed the importance of instilling in the user
a strong sense of control over the entire evolutionary process.
Similarly, Shneiderman and Plaisant [3] required that system
users be the initiators of actions rather than simply responding
to prompts from the system. These principles apply generally
to any human-computer interactive system, but have not been
fully considered in the design of current IEC frameworks.

These lines of research suggest that enhancing the level of
interaction and control of IEC may be beneficial. Therefore,
here we propose hyperinteractive evolutionary computation
(HIEC), a novel form of IEC in which a human user actively
chooses when and how to apply each of the available evolu-
tionary operators, playing the central role in the control flow
of evolutionary search processes (Fig. 2).

We expected that evolutionary design with HIEC would
produce a more controllable and positive user experience,
and thereby better design outcomes, than those with NIEC,
but potentially with increased user fatigue due to the more
complex interface. To examine these issues experimentally, we
developed two software applications for designing colorful,
animated patterns using kinetically interacting self-propelled
particles. The first application was based on NIEC, while the
second one was developed by converting the first one into
an HIEC-based application. Using these two applications, we
conducted three human-subject experiments.

In the first experiment, individual subjects used the NIEC
and HIEC applications to evolve aesthetically pleasing pat-
terns. We quantified, using questionnaire, user experience
outcomes such as ease of operation, controllability, fun, overall
satisfaction, and user fatigue, in order to quantify potential
differences in user experience between the two applications.
In the second experiment, subjects formed groups and worked
on the same task as that of the first experiment, but the qualities
of final designs produced were assessed collectively by group
evaluation. The purpose of this experiment was to compare
the quality of the designs generated with HIEC with those
generated with NIEC. In the third experiment, we modified the
HIEC application to keep a complete log of the evolutionary
events taking place within an HIEC run. Subject groups were
then instructed to use the HIEC application under different
conditions. This experiment was to explore the potential of
HIEC as a research tool for studying user behavior.

The rest of this paper is structured as follows. In Section II,
we propose the basic architecture of HIEC and discuss its
relationships with other IEC technologies. Section III pro-
vides details of the two software applications we developed,
followed by detailed descriptions of the three experiments
we conducted. Discussions, including limitations and future
research directions are given in Section IV.
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Fig. 1. Control flow of a narrowly defined IEC (NIEC) application. The user
is prompted for fitness information once each generation but has no control
over the overall search dynamics.

II. Hyperinteractive Evolutionary Computation

We present HIEC as a novel form of IEC where a human
user has all available evolutionary operators at his/her disposal.
The control structure of an HIEC algorithm is illustrated in
Fig. 2. The user directs the overall search process and initiates
actions by choosing when and how each evolutionary operator
is applied. The user may add a new individual to the population
through the crossover, mutate, duplicate, or random operators.
The user can also remove individuals with the delete operator.
This naturally results in dynamic variability of population size
and continuous generation change (like steady-state strategies
for genetic algorithms [4]).

In HIEC, the user can wield evolutionary operators like
tools, using each to impart a different kind of specific change
to a subset of the evolving population of individuals, just
as a painter uses a variety of brushes and paints to impart
different kinds of change to the developing canvas. In this
sense, working with an HIEC system is somewhat similar to
working with typical interactive editing applications.

It is instructive to compare the control flow of NIEC (Fig. 1)
to that of HIEC (Fig. 2). In NIEC, the user inhabits a single
node in a simple periodic sequence, while in HIEC, the user
inhabits the central node or hub of the system as well as
many of the lower level nodes. Moreover, while NIEC is
characterized by abrupt changes from one generation to the
next, the population in an HIEC changes more gradually, with
only a small number of individuals being added or deleted
at any given time. While gradual population changes in the
(non-interactive) evolutionary computation literature abound,
HIEC is the first example of an IEC framework to use this
technique.

There is another important difference between HIEC and
NIEC. While NIEC requires that the user explicitly supply
fitness information to the system, no such mechanism for
obtaining fitness information from the user exists in HIEC.
This is because in HIEC it is the human, not the computer,
who decides when and how to perform selection.

HIEC follows in the footsteps of other IEC technologies
that have successfully increased the role of the user beyond
that of fitness evaluator. IEC technologies which are designed
to increase the participation of the user have collectively
been referred to as “active user intervention (AUI)” [5]. One
conceptual leap we attempt to achieve with HIEC is to have the

Fig. 2. Control flow of an HIEC application. Compare to Fig. 1.

human user not just “intervene” with a search process driven
primarily by a computer, but play a more central role as the
main driver of the search process (as seen in Fig. 2), where
the computer merely assists the user’s active design efforts by
providing evolutionary operators.

In what follows, we discuss four existing AUI technolo-
gies and their relationships with HIEC. Specifically, we will
discuss SBART with multi-fields [6], [7], online knowledge
embedding [8], visualized IEC [5], and human based genetic
algorithms (HBGA) [9].

SBART version 2.2b [7] has a multi-field interface which
allows users to create distinct subpopulations (fields) of in-
dividuals. Each field is contained within its own separate
window and is evolved independently by the user. The user
may also elect to copy individuals from one field to another.
In addition, SBART 2.2b features context menus which can
be used to apply evolutionary operators directly to a selected
individual in a manner that is very similar to HIEC. While we
find the “multiple fields” aspect of the SBART 2.2b interface
to be commendable in its own right, it is the ability to apply
evolutionary operators directly to selected individuals which
we feel is the more fundamental design innovation, and is
the reason we see the SBART 2.2b interface as a forerunner
of HIEC. Technical differences of SBART 2.2b compared to
our HIEC are that it still uses discrete generation changes in
each field and it does not allow the user to browse the entire
population on a screen at once.

Online knowledge embedding [8] allows the user to submit
search ideas, hints, or intentions to make the search more effi-
cient, e.g., the user cuts down the search space by fixing genes
in real time. Online knowledge embedding is most effective
in non-epistatic search spaces, i.e., search spaces in which
each gene contributes independently to the phenotype of an
individual. HIEC contains no such limitation and is well suited
for epistatic search spaces with many gene-gene interactions.
Conversely, online knowledge embedding is likely to converge
much quicker than HIEC when used on non-epistatic search
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spaces, due to the large search regions that are ruled out each
time a gene is fixed.

Visualized IEC [5] visualizes a multi-dimensional search
space on a 2-D plane, allowing the user to visually grasp
the entire distribution of individuals. This allows the user
to provide a rough estimate of the location of the global
optima to the system. The construction of a visualized IEC
system requires that a meaningful mapping from the multi-
dimensional search space to the 2-D plane be identified.
Such a mapping must approximately preserve the topological
relationships that exist among the individuals [5]. In the event
that an appropriate mapping cannot be identified, HIEC can
still be employed. On the other hand, visualized IEC can be
integrated into EC algorithms in which fitness information is
provided by the computer rather than by a human. In such
cases, visualized IEC can accelerate the convergence of the
EC search [5]. HIEC does not have the capability to work
with computer-supplied fitness data.

HBGA [9] is a genetic algorithm in which the low-level
execution of evolutionary operators is outsourced to one or
more human agents. This approach is particularly useful for
cases in which the representation of the evolving entities is not
well defined. For example, a human agent may be prompted to
mutate an idea which has been expressed in natural language.1

On the other hand, HBGA is not well suited for problems in
which the low-level execution of evolutionary operators is not
easy or obvious to humans.

To illustrate the relationship of the online knowledge em-
bedding, visualized IEC, and HBGA technologies to our
HIEC, we partition the search control into the following three
levels. The top level is global settings, where global variables
such as population size and mutation rate are defined. This
level also contains information about the search space and
estimations of the global optimum within it. Next is the
population level, where changes to the population are executed
using individual evolutionary operators as minimal operational
units. The last one is the individual level, where individuals
are actually modified and their resulting fitness is ascertained.
By considering the levels of user-driven search control that
each technology emphasizes (Fig. 3), it is clearly realized that
the relationships between those technologies and our HIEC are
complementary, rather than mutually exclusive. The architec-
tures of future IEC applications therefore may have a larger
set of interaction-enhancing features. The appropriateness of
each feature will likely be problem specific.

III. Experiments

In this section, we present three human-subject experiments
and their results that demonstrate the benefits and potentials
of HIEC. For the experiments, we developed and used two
software applications, Swarm Chemistry 1.1 and 1.2, which
are NIEC and HIEC applications, respectively. This approach
is similar to the one taken in [10], where several different
interaction mechanisms for an IEC application were compared.

1For example, see the Free Knowledge Exchange Project (http://3form.org).

Fig. 3. Levels of search control granted to the user by online knowledge
embedding (OLKE), visualized IEC (VIEC), HIEC, HBGA, and NIEC. As
shown in this figure, these technologies are not mutually exclusive and can
therefore complement each other.

A. Swarm Chemistry

Swarm Chemistry [11], [12] is a novel artificial chemistry
[13] framework that uses artificial swarm populations as
chemical reactants and designs spatio-temporal patterns of
heterogeneous swarms using IEC. In Swarm Chemistry, it is
assumed that self-propelled particles move in a 2-D infinite
continuous space. Each particle can perceive the relative
positions and velocities of other particles within its local
perception range, and changes its velocity in discrete time
steps according to kinetic rules similar to those of Reynolds’s
Boids [14]. Each particle is assigned its own kinetic parameter
settings that specify preferred speed, local perception range,
and strength of each kinetic rule. Particles that share the
same set of kinetic parameter settings are considered to be
of the same type. For more details of the model and the
simulation algorithm used, see [12]. The Swarm Chemistry
simulators were implemented as Java applets/applications and
are available online from the project website.2 Using the
simulators, one can interactively investigate what kind of
dynamic patterns or motions may emerge out of the mixtures
of multiple types of particles. Computational exploration has
shown that heterogeneous particle swarms usually undergo
spontaneous mutual segregation, often leading to the formation
of multilayer structures, and that the aggregates of particles
may additionally show more dynamic macroscopic behav-
iors, including linear motion, oscillation, rotation, chaotic
motion, and even complex mechanical or biological-looking
structures and behaviors. Specifications of those patterns were
indirectly and implicitly woven into a list of different kinetic
parameter settings and their proportions, called a recipe, which
would be hard to obtain through conventional design methods
but can be obtained heuristically through IEC methods.

Swarm Chemistry 1.1 [12] uses discrete, non-overlapping
generation changes, like most other NIEC applications. The
user selects one or two favorable swarms out of a fixed number
of swarms displayed, and the next generation is generated out
of them, discarding all other unused swarms (Fig. 4). Selecting
one swarm creates the next generation using perturbation and
mutation. Selecting two swarms creates the next generation
by mixing them together (similar to crossover, but this mixing

2Available at: http://bingweb.binghamton.edu/∼sayama/SwarmChemistry.
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Fig. 4. Selection operations and consequent generation changes in Swarm
Chemistry 1.1. A next generation is produced using only a few swarms
selected by a user, while unselected ones are discarded.

Fig. 5. Recipe window showing the composition of different types of
particles in a swarm.

is not genetic but physical). Right-clicking on a swarm opens
a recipe window (Fig. 5), where the user can see how many
particles of each type are used in simulating that swarm.

Swarm Chemistry 1.2 [15] has a redesigned HIEC-based
interface with the same simulation algorithm of a swarm’s
kinetic dynamics as its NIEC counterpart. Fig. 6(a) shows a
screenshot of version 1.2, where multiple swarms are displayed
in separate frames placed at random positions on a screen and
simulated simultaneously. Each frame has a set of evolution-
ary operators in its menu (Fig. 7, redesigned from the one
published in [15]). In version 1.2, the number of swarms is
unlimited and changes dynamically in the course of interactive
design. Positions and sizes of the frames are automatically
adjusted using simple pseudo-kinetic rules, though they can
be changed manually too.

Version 1.2 uses continuous generation changes, i.e., each
evolutionary operator is applied only to part of the population
of swarms on a screen without causing discrete generation
changes [Fig. 6(b)–(e)]. A randomly generated swarm can be
added by clicking on the “add a random swarm” button in
the control panel located at the top [Fig. 6(b)]. A mutated
copy of an existing swarm can be generated by either selecting
the “mutate” option or double-clicking on a frame [Fig. 6(c)].

Fig. 6. Demonstration of how Swarm Chemistry 1.2 works. (a) Screenshot.
Multiple swarms are displayed at random positions on a screen and simulated
simultaneously. Positions and sizes of the frames are adjusted automatically
using simple pseudo-kinetic rules. The long rectangular frame at the top is
the control panel. (b) Random generation. Clicking on the “add a random
swarm” button in the control panel adds a new, randomly generated swarm
at a random position on the screen. (c) Mutation. Selecting the “mutate”
option or double-clicking on a frame creates a mutated copy of the selected
swarm next to it. (d) Mixing. Selecting the “mix” option or single-clicking
on two frames creates a mixture of the selected two swarms between them.
(e) Replication. Selecting the “replicate” option on a frame creates an exact
copy of the selected swarm next to it.

Mixing two existing swarms can be done by single-clicking on
two frames, one after the other. Mixing can also be performed
by selecting the “mix” option on each of the two frames, one
after the other. The new mixture is placed physically in the
middle of the two selected swarms’ frames [Fig. 6(d)]. The
“replicate” option creates an exact copy of the selected swarm
next to it [Fig. 6(e)]. The “edit” option opens a recipe window
of the selected frame (Fig. 5), where the user can see and
edit the kinetic parameter sets of the swarm directly. Finally,
one can remove a frame from the population by selecting the
“kill” option or simply closing the frame (example not shown
in figures).

For the remainder of this paper, we will refer to Swarm
Chemistry 1.1 as “the NIEC application” and Swarm Chem-
istry 1.2 as “the HIEC application.” Further, we will use the
word “designs” to refer to the swarms created using these
applications.
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Fig. 7. Menu available on each frame in Swarm Chemistry 1.2.

B. Experiment 1: User Experience

In the first experiment, we evaluate the benefits of HIEC
in terms of user experience, such as intuitiveness, fun, con-
trollability, and fatigue. Of particular concern in the IEC
research is the user fatigue issue [1] because it limits the
exploratory capability of the interactive search processes. In
NIEC, since the user serves as a fitness evaluator, user fatigue
is typically considered to be proportional to the amount of
fitness information provided by the user during an IEC run.
In HIEC, however, the user takes an active role in the overall
search, which makes it difficult to characterize user fatigue
simply by the amount of fitness information provided by
the user. Therefore, we used the subjects’ self-reports to a
questionnaire as a method to assess the fatigue level perceived
by the user.

1) Experimental Setup: The subjects were recruited from
students and faculty/staff members at Binghamton University,
Binghamton, NY. The subjects’ backgrounds were: 9 females,
12 males; 15 students, 5 faculty/staff members, 1 other; 10
from the School of Engineering and Applied Science, 11 from
others. Each subject was recruited and participated individu-
ally. Upon agreeing to participate in the study, the subject
was told that he or she was to spend 5 min using each of
two applications to design an “interesting and lifelike” design.
The two applications, “Platform X” and “Platform Y,” were
the NIEC and HIEC applications, respectively. Since subjects
were not familiar with the applications, subjects were given
brief tutorials on their usage. Each of these two applications
ran on their own dedicated computer station.

Subject participation proceeded as follows.

a) The subject was seated at one of the two stations and
given 5 min to design an “interesting and lifelike” design
using the platform installed on that station (either NIEC
or HIEC).

b) The subject was then moved to the other station and
given 5 min to design an “interesting and lifelike” design
using the platform installed on that station.

c) The subject filled out a survey, rating each of the two
platforms on the following factors: easiness of operation,
controllability, intuitiveness, fun factor, fatigue level,
final design quality, and overall satisfaction. Each factor
was rated on a 5-point scale.

To avoid order bias, the orders of platforms used in
steps 1 and 2 were varied. Furthermore, the positions of the
two stations were varied between left and right so as to min-
imize bias that might result from their physical positions. As
a result, four subjects participated under the X(left)→Y(right)
configuration, four subjects under the Y(right)→X(left) con-
figuration, five under the X(right)→Y(left) configuration, and
six under the Y(left)→X(right) configuration.

TABLE I

Differences in User Experience Obtained in Experiment 1

Factor Median Median Two-Sided
NIEC Rating HIEC Rating p-Value

Easiness of operation 5 5 0.681
Controllability 3 5 < 0.0001*
Intuitiveness 4 4 0.280
Fun factor 4 5 0.007*
Fatigue level 1 2 0.737
Final design quality 4 4 0.184
Overall satisfaction 4 5 0.009*

* Significant differences are shown in bold and marked with an asterisk.

2) Results: The rating data was analyzed for differences in
user experience using the Wilcoxon Rank-Sum test. In this and
all the following statistical tests, the significance level α = 0.05
was used. A summary of the results is given in Table I. Of the
seven factors measured, three showed a statistically significant
difference between two platforms: controllability, fun factor,
and overall satisfaction. The higher controllability ratings for
HIEC suggest that our original intention to re-design an IEC
framework to grant greater control to the user was successful.
Our results also suggest that this increased control may be
associated with a more positive user experience, as is indicated
by the higher overall satisfaction and fun ratings for HIEC. In
addition, we did not find a statistically significant difference
in fatigue level between NIEC and HIEC, contrary to what we
originally expected. In the meantime, there was no significant
difference detected in terms of perceived final design quality
either. This issue is investigated in the next experiment.

C. Experiment 2: Design Quality

The goal of the second experiment was to quantify the
benefit of HIEC over NIEC in terms of final design quality. In
addition, the effects of mixing and mutation operators on the
final design quality were also studied. The key feature of this
experiment was that design quality was rated not individually
by the subjects who designed them but simultaneously by an
entire classroom full of subjects. The increased amount of
rating information yielded by this procedure allowed us to
more effectively detect differences in quality between designs
created using NIEC and designs created using HIEC.

1) Experimental Setup: The experiment was done as part
of the activities in the “Evolutionary Product Design” module
of an engineering elective course “Exploring Social Dynam-
ics,” which was developed with financial support from NSF
(Award 0737313) and offered to senior and junior bioengineer-
ing and management majors at Binghamton University. The
participating students’ backgrounds were: 9 females, 12 males,
18 bioengineering major, 3 management major. Those subjects
did not have any overlap with the subjects of experiment 1.

The procedure of the experiment was as follows.

a) 21 students were randomly divided into seven groups,
each made of three members. Every time groups were
formed, we confirmed that each group had at least one
member who had a Java-enabled laptop computer with
wireless network connection.
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b) They were instructed to launch the NIEC application
from the project website, received a brief explanation
of how to use the application, and then asked to work
together as a team to design an “interesting” design
within 10 min. After that, each group was reminded
to make a final decision within an extra minute and
choose the best design as the group’s final design. Then
they were told to post their designs to an online bulletin
board. This step is called “condition 0” hereafter.

c) Then, the HIEC application was introduced with a brief
explanation of how to use it and how it differs from the
NIEC version, and the following four conditions were
disclosed to the students: 1) baseline (neither mixing nor
mutation operators available); 2) mixing only; 3) muta-
tion only; 4) mixing + mutation (full-featured HIEC).

Correspondingly, four variations of the new simulator were
prepared and uploaded to the website, each of which was
configured with these two evolutionary operators enabled or
disabled according to the experimental condition associated
with it.

d) Students were randomly reshuffled into seven new
groups. Each group was randomly assigned to one of the
above four conditions and told to launch the application
that corresponds to the assigned condition. Then they
were told again to collaboratively create a nice design
within 10 min (Fig. 8) and post their final design to the
online bulletin board within an extra minute.

e) The above step was repeated three times, making the
total number of final designs (1 + 3) × 7 = 28. Every
time, the students were randomly regrouped so as to
minimize potential effects of confounding factors. The
total number of produced swarms are: condition 0: 7,
condition 1: 5, condition 2: 5, condition 3: 5, condition
4: 6.

f) Finally, all 28 designs generated were displayed on a
large screen in the classroom (Fig. 9). The order of
the designs was randomized on the screen (except for
those of condition 0 that were arranged on the top
row for technical reasons). Then each student was told
to evaluate how “cool” each design was on a 0-to-10
numerical scale (10 being the best) using a web-based
rating system. For those who did not have a laptop,
PDAs with wireless network connection were handed
out as needed. As a result, each design received 21
individual rating scores.

2) Results: To quantify the differences in ratings across the
different conditions, we sought to consolidate the individual
student ratings to yield a “group rating” for each design.
However, individual student rating patterns varied widely, with
some students tending to rate near the extremes of the scale,
and others near the center of the scale. In order to ensure that
each student had an equal influence on the group rating for
each design, it was necessary to transform the ratings given
by each student so that the mean of each student’s ratings
was 0 and the standard deviation was 1. These “effective
scores” were then collected and averaged for each of the five
(0–4) experimental conditions. The result is shown in Fig. 10.

Fig. 8. Students working on collaborative swarm design tasks during the
in-class experiment.

Fig. 9. 28 swarms simultaneously simulated and projected on a large screen
in the classroom for students’ group evaluation.

Several final designs produced through the experiment are
shown in Fig. 11 (three with the highest scores and three
with the lowest scores), which indicate that highly evaluated
swarms tend to maintain coherent, clear structures and motions
without dispersal, while those that received lower ratings tend
to disperse so that their behaviors are not appealing to students.

To detect statistical differences between experimental con-
ditions, a one-way ANOVA was conducted. The result of
the ANOVA is summarized in Table II. Statistically signifi-
cant variation was found between the conditions (p < 0.005).
Tukey’s and Bonferroni’s post-hoc tests detected a significant
difference between conditions 0 and 4, which supports our
hypothesis that the HIEC is more effective at producing final
designs of higher quality than NIEC. The post-hoc tests also
detected a significant difference between conditions 1 and 4.

D. Experiment 3: HIEC for User Behavior Research

In experiments 1 and 2, we showed that HIEC has signifi-
cant user experience and performance benefits over NIEC as
an evolutionary design tool. In the third experiment, described
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TABLE II

Results of One-Way ANOVA on the Rating Score Data for

Conditions 1-4 Obtained in Experiment 2

Source of Degrees of Sum of Mean F F -Test
Variation Freedom Squares Square p-Value
Between groups 4 14.799 3.700 4.11 0.003*
Within groups 583 525.201 0.901
Total 587 540

* Significant difference is shown in bold and marked with an asterisk.

Fig. 10. Comparison of effective score distributions between products pro-
duced under five experimental conditions. Conditions 1, 2, and 3 are limited
versions of HIEC. Mean effective scores are shown by diamonds, with error
bars around them showing standard deviations.

Fig. 11. Samples of the final product designs created by students. (a) Best
three that received the highest rating scores. They were produced under
condition 3, 4, and 4 (from left to right), respectively. (b) Worst three that
received the lowest rating scores. They were produced under condition 0, 0,
and 2 (from left to right), respectively.

in this section, we further explore and demonstrate other
possibilities of HIEC, specifically as a data collection tool for
user behavior research. Specifically, we provide subject groups
with different priming instructions (“creative,” “critical,” and
“control”) and measure, using a modified HIEC application,
how each of the instructions affects the group’s behavior.

1) Experimental Setup: The experiment was again con-
ducted as part of the “Exploring Social Dynamics” course
mentioned earlier. The participating students’ backgrounds

Fig. 12. Students using the touchscreen PCs to design products with the
HIEC application.

were: 6 females, 16 males; 12 bioengineering major, 10 other
majors. This experiment was done in a different semester from
that of experiment 2 so the subjects did not have any overlap
with the subjects of experiment 1 or 2.

To collect data of evolutionary events during design pro-
cesses, we revised the HIEC application so that it could keep
track and generate a complete time-stamped log of all the
evolutionary events taking place within an HIEC run. This
modified application was then used simultaneously by a group
of collaborating subjects. In addition, for this experiment
we decided to use a new touchscreen-based digital tabletop
interface, which has proved to be more suited to collaborative
work than their mouse-monitor counterparts [16], [17].

Since the price of commercial digital tabletops, such as
Microsoft Surface or Mitsubishi Electronics’ DiamondTouch,
is currently in the tens of thousands of dollars [18], we
improvised a more economical alternative by using small
touchscreen PCs. Specifically, we used the “Asus Eee Top”
touchscreen PC available for only $500. When placed on its
side with the screen facing up, it emulates the functionality
of a digital tabletop. Once arranged in this way, up to four
students can stand around the digital tabletop and interact with
the HIEC application simultaneously.

The procedure of the experiment was as follows.

a) 22 subjects were placed into 6 groups of 3 and 1
group of 4 students each. Each group was assigned to
a station with a digital tabletop running the modified
HIEC application. The students were then given a brief
tutorial on how to use the application, including an
overview of the various evolutionary operators available
to them. Each group was then given 10 min to design an
aesthetically pleasing design (Fig. 12), with no further
guidance given. This phase of the experiment served as
the experimental control.

b) The subjects were reshuffled into seven new groups.
Three groups were primed to be critical and risk-averse,
with the following written instruction: “promote and
maintain critical attitude throughout the design process.
Incremental improvement of existing designs is the key
to making a reliable solution. Completely new designs
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TABLE III

Total Operator Usage Frequency Across Three Conditions in

Experiment 3

Condition
Total Operator Usage Frequency

Mix Mutate Random Replicate

Control
139 48 32 2

(62.9%) (21.7%) (14.5%) (0.9%)

Creative
229 50 67 0

(66.2%) (14.5%) (19.4%) (0.0%)

Critical
128 168 15 4

(40.6%) (53.3%) (4.8%) (1.3%)

Relative frequency is shown in parentheses.

Fig. 13. Ternary plot of the user behavior data with respect to the mix,
mutate, and random evolutionary operators. Each marker represents data taken
from one group.

will never be better than well-tested ones.” The other
four groups were primed to be creative and adventurous,
with the following written instruction: “Promote and
maintain creative attitude throughout the design process.
Crazy inspiration and idiosyncratic thinking is the key to
breaking the barrier of stereotyped designs. Incremental
improvement of existing designs will never work out.”
Then the groups were once again given 10 min to design
an aesthetically pleasing design.

c) Step 2 was repeated, this time with four “critical” groups
and three “creative” groups.

The log files containing detailed information about all the
evolutionary events were saved to the local hard drive of each
PC and later collected for post-experimental analysis. One
of the “control” groups had a technical problem during the
experiment, and therefore their data were excluded from the
analysis. As a result, we collected data from six groups work-
ing under the “control” condition, seven under the “creative”
condition, and seven under the “critical” condition.

2) Results: Table III shows a comparison among three
conditions in terms of operator usage frequencies summed
across all groups in each condition. The results indicate that
control and creative groups behave essentially the same way,
while critical groups exhibited a behavior that set them apart
from the others. Fig. 13 is a ternary plot showing the distribu-
tion of relative operator usage frequencies of each group in a

TABLE IV

Multivariate Test Results of One-Way MANOVA on Operator

Usage Frequency Data for the Three Conditions Used in

Experiment 3

Statistic Value F Hypothesis Error F -Test
df df p-Value

Pillai’s Trace 0.586 3.524 4 34.000 0.016*
Wilks’ Lambda 0.416 4.410 4 32.000 0.006*
Hotelling’s Trace 1.402 5.258 4 30.000 0.002*
Roy’s Largest Root 1.399 11.894 2 17.000 0.001*

* Significant differences are shown in bold and marked with an asterisk.

TABLE V

Contrast Results (K-Matrix) of One-Way MANOVA on

Operator Usage Frequency Data for the Three Conditions in

Experiment 3

Contrast Dependent Variable
Mix Mutate

Contrast estimate 0.54 −0.095
Creative versus Hypothesized value 0 0
control Difference 0.54 −0.095

Std. error 0.99 0.103
Significance (p-value) 0.592 −0.369

Contrast estimate −0.245 0.344
Critical versus Hypothesized value 0 0
control Difference −0.245 0.344

Std. error 0.099 0.103
Significance (p-value) 0.025* 0.004*

* Significant difference is shown in bold and marked with an asterisk.

2-D visualization space for three different conditions. Since the
replicate operator was used so infrequently, it was excluded
from this figure and subsequent tables. From the figure we can
see that the control and creative groups appear to be clustered
together near the mix corner of the triangle, while the critical
groups are spread out over a much wider area.

We tested statistical differences between the conditions
using MANOVA, a multivariate generalization of ANOVA,
on the relative operator usage frequencies. The results are
summarized in Tables IV and V, which is consistent with
our statement that the control and creative populations are
essentially the same while the critical population is distinct
from the rest.

IV. Conclusion and Future Work

In this paper, we introduced HIEC, a new class of IEC which
extends the role of the user beyond that of the simple fitness
evaluator commonly used in NIEC applications. We described
three human-subject experiments. The first two experiments
evaluate the advantages of HIEC over NIEC with respect to
user experience and design quality, respectively. We found
that users perceived HIEC to be more controllable, more fun,
and more satisfying to use than NIEC. Furthermore, designs
created using HIEC were of significantly higher quality than
those created using NIEC. Our third experiment, which made
use of an evolutionary event tracking feature, demonstrated the
potential of HIEC as a scientific research tool for user behavior
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studies. We found that users will show different patterns of
operator choices depending on the priming conditions given
to them.

There are several limitations in each of the above experi-
ments. First, we could not fully exclude several confounding
factors in the experiments conducted in class, because they
were part of the instruction and thus had to be delivered
in a certain logical flow. For example, in the second ex-
periment, condition 0 (NIEC) was tested prior to the other
four conditions. Similarly, in the third experiment, the control
condition was tested prior to the other two conditions. These
non-random orders of conditions might have had influences
on our experimental results. Second, and more importantly,
all of our experiments used Swarm Chemistry as a testbed,
so we cannot at this time be certain that the results derived
by comparing the two applications (versions 1.1 and 1.2) are
truly generalizable to other NIEC and HIEC applications. The
possibility remains that the benefits of HIEC over NIEC may
be problem dependent.

We also note that there are still several situations in which
NIEC should be used rather than HIEC. First, NIEC is
characterized by a rapid sequence of generations, each of
which typically inherits characteristics from only one or two
individuals of its parent generation. Hence, NIEC has a very
high selection pressure and will converge quicker than HIEC.
Thus, NIEC may be a useful option in situations where quick
convergence is critical. Second, because the search strategy
employed by an HIEC system is directed by the human user,
it is likely that the performance of an HIEC system will
depend strongly on the user’s skill level. In particular, a user
who understands the nuances of the exploration/exploitation
tradeoff will likely perform better than a user who has never
been exposed to evolutionary theory. In contrast, NIEC users
act primarily as fitness evaluators, so that their evolutionary
knowledge (or lack thereof) has no effect on the search
trajectory. Thus NIEC should be used in situations where the
system must perform consistently, regardless of the skill or
educational background of the human user. Third, because
HIEC gives the user the ability to control the number of
individuals under consideration (i.e., the population size), it
is possible that the user may allow the population to grow
out of control. Since large populations are more difficult
to manage than small ones, overpopulation may produce a
computational and cognitive burden from which it is difficult
to recover. NIEC, with its fixed population size, does not have
this problem.

The following is a partial overview of some of the research
we plan to do in the future to extend the quality and viability
of HIEC applications.

A. Applications to Other Evolutionary Design Tasks

To address the generalizability issue mentioned above, we
plan to develop other HIEC applications other than Swarm
Chemistry. In experiment 1, we redesigned the interface of a
non-HIEC application (in this case, Swarm Chemistry 1.1) to
make an HIEC application (Swarm Chemistry 1.2). The same
process can be applied to many other non-HIEC applications,
as long as multiple individual designs can be visualized and

displayed simultaneously on a monitor. For example, the non-
HIEC applications for creating criminal suspect face sketches
[19], 3-D computer graphics lighting designs [20], tiles [21],
artwork [7], and virtual aquarium fish [22], [1] could each
be redesigned as HIEC applications. The same set of human
subject experiments that were done in this paper could then
be conducted to check the robustness of our experimental
observations across different tasks.

B. Computer-Assisted Selection Mechanism

In our current HIEC application, Swarm Chemistry 1.2,
the user is responsible for manually pruning those individuals
that he/she is no longer interested in. Some users found the
process of deleting uninteresting individuals to be tedious,
while preferring the use of more exploratory operators such as
mixing and mutation. To take this burden off the user, we plan
to implement a computer-assisted selection mechanism that
detects which individuals the user is no longer interested in and
automatically deletes them from the population. Specifically,
individuals that the user has not interacted with for a long pe-
riod of time will gradually begin moving toward the periphery
of the display, until finally they simply “fall off” the screen
and disappear. In addition, a “safe zone” will be provided near
the center of the display, so that individuals that are dragged
into it will be preserved indefinitely without continuous user
interaction. These improvements may eliminate the burden of
manual selection, thereby further decreasing user fatigue.

C. Integrating HIEC with Other Frameworks

Online knowledge embedding, visualized IEC, HBGA, the
SBART 1.2 multi-field interface and HIEC were all designed
to extend the role of the user beyond the role of fitness
evaluator that he/she historically fulfills in NIEC. As indicated
in Fig. 3, these frameworks are not mutually exclusive, so
hybrids should be developed and examined. Future versions
of HIEC applications could implement elements of online
knowledge embedding, for example, by giving the user the
ability to prune the search space.

Alternatively, elements of HBGA could also be imple-
mented, for example, by allowing the user to directly manip-
ulate and edit individual solutions.

D. Using Larger Tabletops

Although the exorbitant cost of large digital tabletop dis-
plays makes them inaccessible to most consumers, this is
likely to be remedied in the future since technology tends
to become cheaper over time. It may therefore be worthwhile
investigating the use of large, multi-touch, multi-user digital
tabletops by collaborative groups using an HIEC application.
Such a system may provide the following benefits.

1) More individual designs can be displayed at the same
time, which naturally improves the exploratory ability
of IEC.

2) With multi-touch technology, group members need not
waste time and energy taking turns.

3) With multi-user technology that enables identification
of users, each group member’s behavior can be tracked
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separately, which will provide more detailed, useful data
of user behavior.

4) Each group member can focus on exploring a subpop-
ulation of the individuals displayed. Group members
may occasionally “trade” individuals among themselves,
leading to a search behavior similar to what is seen in
course-grained distributed genetic algorithms [23].
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