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Abstract—Machine learning algorithms such as genetic pro-
gramming (GP) can evolve biased classifiers when data sets are
unbalanced. Data sets are unbalanced when at least one class is
represented by only a small number of training examples (called
the minority class) while other classes make up the majority. In
this scenario, classifiers can have good accuracy on the majority
class but very poor accuracy on the minority class(es) due to
the influence that the larger majority class has on traditional
training criteria in the fitness function. This paper aims to both
highlight the limitations of the current GP approaches in this area
and develop several new fitness functions for binary classification
with unbalanced data. Using a range of real-world classification
problems with class imbalance, we empirically show that these new
fitness functions evolve classifiers with good performance on both
the minority and majority classes. Our approaches use the original
unbalanced training data in the GP learning process, without the
need to artificially balance the training examples from the two
classes (e.g., via sampling).

Index Terms—Classification, fitness function, genetic program-
ming (GP), unbalanced data.

I. INTRODUCTION

C LASSIFICATION is a systematic way of predicting class
membership for a set of examples or instances using

the properties of those examples [1]. Given the abundance of
information now being captured and stored digitally, systems
that can automatically search for and identify valid and useful
patterns in data for classification with little human interven-
tion are fast becoming highly desirable. However, creating
intelligent learning systems that reliably perform classification
with a sufficient level of accuracy is difficult. Many real-
world classification problems involve large numbers of learning
examples, high dimensionality, and complicated relationships
between class membership and example properties.

Genetic programming (GP) is a promising machine learning
and search technique which has been successful in building
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reliable classifiers to solve a range of classification problems
[2]–[6]. GP is an evolutionary learning algorithm which uses
the principles of Darwinian evolution or natural selection to
automatically evolve computer programs to solve problems. In
GP, programs representing different solutions to a problem are
combined with other programs to create new hopefully better
programs; this process is repeated over a number of generations
until a good solution is evolved [2].

In many real-world domains, it is not uncommon for data
sets to have unbalanced class distributions [7]–[13]. This occurs
when at least one class is represented by only a small number
of examples (called the minority class) while other classes
make up the rest (called the majority class). Recent research
in the machine learning community has highlighted that using
an uneven distribution of class examples in the learning process
can leave learning algorithms with a performance bias, i.e., so-
lutions exhibit high accuracy on the majority class(es) but poor
accuracy on the minority class(es) [7], [14]. This is because
traditional training criteria such as the overall success or error
rate can be greatly influenced by the larger number of examples
from the majority class [14]. As the minority class often rep-
resents the main class of interest in many real-world problems,
accurately classifying examples from this class can be at least
as important as, and in some scenarios more important than, ac-
curately classifying examples from the majority class [11], [12].

Addressing this learning bias to find solutions with good ac-
curacy on both the minority and majority classes has become an
important area of research [7]. Techniques to address this issue
involve two main aspects. The first involves transforming, or
sampling from, the original unbalanced data set by creating an
artificially balanced distribution of class examples for training,
the so-called “external” approaches as the training data are ad-
justed, not the learning algorithm. Common external techniques
include oversampling the minority class to boost representation
[15], undersampling or editing of the majority class to decrease
representation [16], or bagging and boosting where many bal-
anced subsets of class examples are used in training [17]. While
these approaches can be effective, they have certain disadvan-
tages. Sampling techniques can add a computational overhead
to the training process, lead to overfitting as potentially useful
learning examples can be excluded from the learning process,
and require a priori task-specific knowledge about the data to
design a suitable sampling algorithm.

The second technique uses cost adjustment within the learn-
ing algorithm to factor in the uneven distribution of class
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examples in the original (unmodified) unbalanced data set, dur-
ing the training process (the so-called “internal” approaches)
[18]–[20]. In GP, cost adjustment can be enforced by adapting
the fitness function. Here, solutions with good classification
accuracy on both classes are rewarded with better fitness, while
those that are biased toward one class only are penalized
with poor fitness. Common techniques include using fixed
misclassification costs for minority and majority class exam-
ples [21], [22], or improved performance criteria such as the
area under the receiver operating characteristic (ROC) curve
(AUC) [18], in the fitness function. While these techniques
have substantially improved minority class performances in
evolved classifiers, they can incur both a tradeoff in majority
class accuracy and, thus, a loss in overall classification ability,
and long training times due to the computational overhead in
evaluating these improved fitness measures. In addition, these
approaches can be problem specific, i.e., fitness functions are
handcrafted for a particular problem domain only [11].

This paper focuses on the second technique and presents
a GP approach to binary classification which takes advantage
of the ability of GP to readily adapt the fitness function for
cost adjustment. We develop several new generic GP fitness
functions for class imbalance which utilize the unbalanced data
sets as is in the learning process, requiring no prior knowledge
about the problem domain. The new fitness functions aim to
evolve classifiers with good classification ability on both the
minority and majority classes and with faster training times than
current GP approaches. We highlight the limitations of both
the standard GP fitness function and two well-known current
approaches for cost adjustment using the fitness function and
present an empirical analysis of the performance of our new
and current GP approaches across a range of real-world class
imbalance problems. Our analysis focuses on the AUC of
evolved solutions using the different GP methods. This is a
useful measure of classification performance in class imbalance
scenarios. We also compare our GP methods to other popular
machine learning algorithms, namely, naive Bayes (NB) and
support vector machines (SVMs), on the tasks.

The rest of this paper is organized as follows. Section II
discusses the related work for classification with unbalanced
data. Section III outlines the unbalanced data sets used in the
experiments. Section IV outlines the GP framework for clas-
sification. Section V presents two alternative GP approaches
for the class imbalance problem and discusses their limitations.
Section VI proposes several new fitness functions. Section VII
presents the full classification results and analysis using the
different fitness functions. Section VIII concludes this paper
and provides directions for future work.

II. RELATED WORK

Recent research has highlighted that the class imbalance
problem is a major obstacle in classifier induction using ma-
chine learning techniques. Many real-world problems have a
naturally occurring imbalance in the representation of examples
in each class. Examples include the following:

1) fraud detection such as network intrusion [11], telephone
fraud [12], and credit card fraud [13];

2) fault diagnosis such as network troubleshooting [22];
3) medical diagnosis of rare conditions [21], [23], [24];
4) bioinformatics tasks such as protein classification [25];
5) financial modeling such as insurance approval [10] or

bankruptcy prediction [26];
6) object detection such as target [8], face [9], or pedestrian

[27] detection (in large images).
Much related work in developing methods to address the

class imbalance problem involves two main approaches. The
first involves transforming, or sampling from, the original
unbalanced data set to create a balanced class distribution
in training. These are known “external” approaches as the
external training data are rebalanced while the learning algo-
rithm remains relatively unchanged. The second approach uses
various forms of cost adjustment within the learning algorithm
to utilize the original unbalanced data “as is” in the training
process. These are known “internal” approaches as the learning
algorithm is adapted to factor in the uneven class distributions.
Many approaches combine these two techniques, i.e., sampling
methods along with cost adjustment in the learning algorithm
[28], [29].

Much work in this area also focuses on gaining a better un-
derstanding of the nature of the class imbalance problem. This
includes studying the effects of using different ratios of class
distributions in the training process [13], [30] and investigating
the influence of other factors during the learning phase [31],
[32]. In [31], the influence of the level of class imbalance,
complexity (class overlap), and training set size during training
is investigated using three learning algorithms. Class imbalance
is shown to be less of a hindrance in larger training sets and
lower complexity problems. A similar conclusion is shown in
both [32] and [33], where the authors find that performance
degradation is not solely due to the level of class imbalance
but is related to the degree of complexity.

A. External Approaches

Common sampling techniques include oversampling the mi-
nority class to boost representation by replicating known minor-
ity examples [29], [34] and undersampling the majority class
to reduce majority class representation [15], [35]. However,
as oversampling does not introduce any new information into
the learning process and undersampling can discard potentially
useful learning examples from the majority class, more ro-
bust sampling techniques, such as synthetic oversampling and
editing, are also common [16], [36]–[38]. Synthetic oversam-
pling of the minority class creates “new” minority examples
by interpolating between several similar examples [36], while
editing carefully removes noisy or atypical majority class ex-
amples (compared to random undersampling) [16], [37]. Other
effective, although more complex, sampling approaches include
random subset selection (RSS) and dynamic subset selection
(DSS) [7], or a combination of these [39], [40]. In [39], a hierar-
chical two-tier sampling approach in GP is used to first sample
“blocks” of training examples using RSS and then sample class
examples within those “blocks” using DSS. In [40], DSS is used
with a bias toward difficult-to-classify examples, while RSS is
used with a bias toward minority instances.
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Bagging and boosting algorithms are also effective in class
imbalance problems [13], [33], [41], [42]. These approaches
train multiple classifiers using smaller and usually balanced
subsets of the original data, which are combined in an ensemble
in the final classification step. These subsets usually contain all
minority instances and the same number of randomly selected
majority instances [41], [42] or focus on those instances not
already accurately learned using weights to influence selection
probability in boosting [33]. In [13], a “metaclassifier” is gener-
ated using four different learning algorithms in the pool of base
classifiers, each trained on subsets of different distributions of
class examples for fraud detection in e-commerce transactions.
In [33], two new undersampling methods are developed to cre-
ate balanced subsets used to train an ensemble of classifiers for
boosting; these are compared to 13 other sampling and boosting
approaches common in the literature across 16 benchmark
University of California Irvine (UCI) tasks. Similarly, in [42],
a new SVM-based undersampling approach iteratively collects
support vectors using balanced subsets of training examples
which are aggregated in the final classification step.

While sampling techniques are effective in improving minor-
ity class performance, they have major limitations. Sampling
approaches can suffer from both overfitting as potentially useful
learning examples can be excluded from the learning process
and poor generalization as the learned models often do not
capture the underlying rarities that occur in unbalanced data
sets (if the training set is artificially balanced). Recent work
comparing sampling techniques to cost adjustment across a
variety of learning algorithms and problem domains shows
that the latter can often outperform sampling methods in many
scenarios [15], [31], [35] and that good results can be achieved
using a combination of sampling and cost adjustment as op-
posed to sampling on its own [29]. Another limitation is that
many sampling or data transformation techniques require a
priori expert knowledge about the data, to design an appropriate
sampling algorithm [11]. Sampling techniques can also add
a computational overhead to the training process as, in most
cases, the sampling algorithm must be applied repeatedly for
best results and optimal coverage.

B. Internal Approaches

For the reasons described earlier, much work within the
machine learning community focuses on cost adjustment within
the learning algorithm to factor in the uneven representation of
class examples. Common approaches include assigning differ-
ent misclassification costs to incorrect class predictions [21],
[22] or developing improved training criteria that are more
sensitive to the unbalanced class distributions (compared to
the standard overall accuracy or overall error rate). Improved
training criteria include the average classification accuracy of
the minority and majority classes [16], [29], [37], [43], the
AUC [18], [44]–[46], statistical measures of accuracy such as
Wilcoxon–Mann–Whitney (WMW) statistic (to approximate
the AUC) [28], [47], or the F -measure widely used in infor-
mation retrieval [20], [48].

Indeed, much research in this area studies the effects that
different training criteria have on the learned classifiers in class

imbalance scenarios [14], [20], [30], [48]. In [20], nine well-
known training criteria, such as the AUC, F -measure, and mean
square error (mse), are compared using a variety of learning
algorithms; a new composite measure based on the average
class accuracy, AUC, and rmse is found to be the most effective
in training good solutions. In [48], the correlation between sev-
eral well-known training measures is studied; ranking measures
(e.g., AUC) are the most effective and the least correlated to
both qualitative (e.g., accuracy) and probabilistic (e.g., log loss)
measures when data are unbalanced, whereas these measures
are all closely correlated when data are balanced. In three
separate studies [14], [30], [47], the authors show that training
using overall accuracy can find good solutions only when the
training set has a balanced class distribution, whereas the AUC
is better when class distributions are unbalanced.

In GP specifically, cost adjustment focuses on developing
new fitness functions to reward solutions which have good ac-
curacy on both classes with better fitness while penalizing those
which have poor accuracy on one class with poor fitness [4],
[11], [19], [49]. In [19], an adaptive fitness function is devel-
oped to periodically reweigh misclassification costs for hard-to-
classify examples. This method improves overall classification
performance compared to canonical GP on four benchmark
UCI [50] tasks, but determining good initial costs is nontrivial.
To address this limitation, a fixed-cost fitness function is used
in [26] for bankruptcy prediction using data from Spanish com-
panies generated between 1999 and 2000. Penalizing incorrect
minority class predictions by a factor of the class imbalance
ratio is shown to outperform previous approaches. In [11], three
new fitness functions are developed for a multiclass network
intrusion detection problem, based on differentiating between
the classification accuracies of each minority class. Using real-
world TCP dump data, these methods evolve classifiers with
good accuracy on most of the minority classes, but the many
free parameters in two out of the three fitness functions are
considered a hindrance. Similarly, three new fitness functions
for binary class imbalance problems are developed in [49].
These use the average classification accuracy of the minority
and majority classes, except each has an increasing penalty
for poor accuracy on one class only. Using two benchmark
(from UCI [50]) and two artificial problems, the authors show
that, not surprisingly, larger penalties lead to better minority
class performance. However, neither the AUC of the evolved
classifiers nor the statistical difference between the three fitness
functions is fully explored.

In two recent GP approaches, the weighted sums of different
measures are combined in the fitness function. The weighted
average of the overall error rate, the mse, and a new measure of
class separability similar to the AUC is used in [4] to evolve
good solutions. In [28], the average of the geometric mean
of the minority and majority class accuracies, and the WMW
statistic, is used in fitness in conjunction with a sampling-based
approach for faster training.

While these approaches for cost adjustment are effective,
there are three main limitations. The first is that misclassi-
fication costs for incorrect class predictions must usually be
determined a priori [11], [21], [22]. These can be problem spe-
cific and often require a trial-and-error process to determine an
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appropriate set of costs for each class. The second is that better
metrics in the fitness function (such as the AUC) can increase
training times due to the computational overhead required to
calculate these measures, particularly on large data sets [20],
[47]. The third limitation is that many new fitness functions
are handcrafted to suit a particular classification problem [11],
[19]. These can require expert or a priori knowledge about the
problem domain, whereas problem-independent fitness func-
tions are more desirable.

Evolutionary multiobjective optimization (EMO) has
also shown some success in this area [51], [52]. In [51], a
multiobjective GP approach is developed using the accuracy of
the minority and majority classes as the two learning objectives.
A Pareto frontier of genetic program classifiers is evolved along
this tradeoff surface, leaving the final choice for the end user,
thus alleviating the need to predetermine the tradeoff a priori
(as required in single-objective approaches). These Pareto
frontier classifiers are then combined into an ensemble where
members vote to classify unseen examples. In [52], an EMO ap-
proach using grammatical evolution is combined with bagging
for tasks with multiple minority classes. Here, two populations
are coevolved: one-class classifiers and “points” (subsets of
balanced training examples which the classifiers act on). A
winner-takes-all approach of the frontier solutions in these
evolved populations is used to determine the final prediction.

III. UNBALANCED DATA SETS

In this section, we outline the six benchmark binary clas-
sification problems used in the GP experiments. These are
taken from the UCI Repository of Machine Learning Databases
[50] and the Intelligent Systems Laboratory at the University
of Amsterdam [53]. Half of the examples in each class were
randomly chosen for the training and the test sets. This ensured
that both training and testing sets always preserve the same
class imbalance ratio as the original data set. Note that no set
contains missing attributes.

Ionosphere (Ion): Ionosphere (Ion) contains 351 recorded
radar signals collected using high-frequency antennas targeting
free electrons in the ionosphere. There are 126 “good” signals
(35.8%) and 225 “bad” signals (64.2%), a class imbalance ratio
of approximately 1 : 3. Signals were processed using an auto-
correlation function returning two attributes per pulse, giving
34 real-number features (F1−F34) [50].

SPECT Heart (Spt): Single-proton emission computed to-
mography (SPECT) heart (Spt) contains 267 records derived
from cardiac SPECT images. There are 55 “abnormal” records
(20.6%) and 212 “normal” records (79.4%), an imbalance ratio
of approximately 1 : 4. Each SPECT image was processed to
extract 44 continuous features; these were further preprocessed
into 22 binary features (F1−F22) [50].

Yeast (Yst1 and Yst2): Yeast (Yst1 and Yst2) contains
1482 instances of protein localization sites in yeast cells, with
eight amino-acid sequences as numeric features (F1−F8) [50].
The problem has nine classes, each with a different degree
of class imbalance. We decompose this task into many binary
classification problems using only one “main” (minority) class
and everything else as the majority class. We use two “main”

Fig. 1. (a) Example (left two) pedestrian and (right two) nonpedestrian images
and (b)local image regions for extracting pixel statistical features.

classes: Yst1 has 244 examples from the mit class (16%) and
an imbalance ratio of 1 : 6, and Yst2 has 163 examples from the
me3 class (11%) and an imbalance ratio of 1 : 9.

Pedestrian Images (Ped): Pedestrian images (Ped) data set
contains 24 800 portable Gray map (PGM) image cutouts,
19 × 36 pixels in size, of 4 800 pedestrian (19.4%) and
20 000 (80.6%) background images, an imbalance ratio of
approximately 1 : 4. Example images are shown in Fig. 1(a).
There are 22 pixel statistical features F1−F22 corresponding to
the mean and variance of pixel values around 11 local regions
in the image. These local regions correspond to the following
rectangular regions: A-B-E-D, B-C-F-E, D-E-H-G, E-F-I-H,
D-H-K-J, H-I-L-K, J-K-N-M, K-L-O-N, P-Q-S-R, R-S-U-T,
and T-U-W-V, as shown in Fig. 1(b).

Balance Scale (Bal): Balance scale (Bal) contains 625
records generated to model psychological experiments. Each
example is classified into three classes: the balance scale tipped
to the right, left, or balanced. Of these, left (46%) or right (46%)
makes up the vast majority; we combine these two classes
into a single (majority) class called “unbalanced” (92%), using
“balanced” as the minority class with 49 examples (8%). This
corresponds to an imbalance ratio of approximately 1 : 12.
There are four integer-based attributes corresponding to the left
and right weights and the left and right distances (F1−F4) [50].

IV. GP FRAMEWORK FOR CLASSIFICATION

A tree-based structure is used to represent genetic programs
[2]. We use feature terminals (example features) and constant
terminals (randomly generated floating-point numbers) in the
terminal set, and a function set consisting of the four stan-
dard arithmetic operators +, −, %, and ×, and a conditional
operator if. The +, −, and × operators have their usual
meanings (addition, subtraction, and multiplication), while %
means protected division (usual division except that a divide by
zero gives a result of zero). Each of these operators takes two
arguments and returns one. The conditional if function takes
three arguments. If the first is negative, the second argument
is returned; otherwise, it returns the third argument. The if
function allows a solution to contain a different expression in
different regions of the feature space and allows discontinuities
rather than insisting on smooth functions.

As the terminals and the return types of all the functions
are numeric, the genetic programs represent mathematical ex-
pressions. For example, Fig. 2 shows the genetic program
(−(+F1 F2)0.5); this solution represents the mathematical
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Fig. 2. Example of a (tree-based) genetic program representing the mathe-
matical expression (F1 + F2) − 0.5. The output of the genetic program (when
evaluated on a data instance) is mapped onto two class labels using zero as the
class threshold.

expression (F1 + F2) − 0.5, where the arithmetic operators
(− and +) are the functions and F1, F2, and 0.5 are the feature
terminals and the constant terminal.

As a mathematical expression, a classifier computes a single
output value (floating-point number) for a particular data ex-
ample that must be classified. This number is then mapped onto
a set of class labels. A common mapping strategy for binary
classification problems with two class labels uses zero as the
class threshold, i.e., as example is assigned to the minority class
if the classifier output is zero or positive, or the majority class
if otherwise, as shown in Fig. 2.

An alternative strategy originally designed for classification
with multiple classes [54] uses a dynamically assigned class
threshold determined on a solution-by-solution basis during the
evolutionary phase. In [54], the class threshold is the point of
least overlap between the two class distributions. Recent work
in GP, which compared the effectiveness of these two clas-
sification strategies in binary class imbalance problems [55],
finds that either strategy can evolve good solutions, providing
that a good fitness function is also used in the evolution. This
is attributed to the evolved GP classifiers that are generally
being able to “shift” their class predictions relative to the zero
class threshold during evolution in binary classification. GP
accomplishes this by tweaking the mathematical expressions
representing the genetic program classifiers during the learning
phase. For example, assume that the genetic program p repre-
senting the expression (F1 + F2) − 0.5 (Fig. 2) outputs values
in the range [5, 10] when evaluated on examples from one class
(e.g., classa) and values in the range [10, 15] for the other class
(e.g., classb). If a mutation or crossover operation on the root
node of p creates a new solution p′ during evolution, where
p′ = p − 10, then the outputs of p′ will lie in the range [−5,
0] for classa and [0, 5] for classb. The new genetic program p′

would then represent the expression ((F1 + F2) − 0.5) − 10,
which can simplified to (F1 + F2) − 10.5. Many other ML
techniques cannot easily achieve this during training. For this
reason, we use the zero-threshold strategy in this paper.

A. Evolutionary Parameters

The ramped half-and-half method is used for generating
programs in the initial population and for the mutation oper-
ator [2]. The population size is 500; initial GP experimental
results indicate that this population size evolves solutions with
good classification performance while keeping training times
relatively low, whereas very large populations can substantially

TABLE I
OUTCOMES OF A TWO-CLASS CLASSIFICATION PROBLEM

increase training times with little improvement in classifica-
tion performance. Crossover, mutation, and elitism rates were
60%, 35%, and 5%, respectively, and tournament selection
is used with a tournament size of seven. This configuration
conforms to the recommended settings within the literature to
balance exploration and exploitation during the evolution. The
maximum program depth is eight to restrict very large pro-
grams in the population. The evolution runs for a maximum of
50 generations or is terminated early if a solution with optimal
fitness (depending on the fitness function) is found. Initial
GP experimental results indicate that increasing the maximum
number of generations allowed (e.g., to 60 and 75) can lead to
overfitting: Evolved solutions show better performance on the
training set but no significant improvement on the test set. Note
that fine tuning this configuration of evolutionary parameters is
outside the scope of this work; this paper focuses on exploring
the effects of different GP fitness functions on the evolved
classifiers.

B. Standard GP Fitness Function for Classification

A typical fitness measure in classification is the overall
classification accuracy [4], [19], [56]. This is simply the number
of examples correctly predicted by a classifier as a fraction of
the total number of training examples. Using the four outcomes
for binary classification shown in Table I and assuming that
the minority class is the positive class, the overall classification
accuracy can be defined by

Acc =
TP + TN

TP + TN + FP + FN
. (1)

Clearly, the standard GP fitness function for classification
Acc considers all examples as equally important when cal-
culating the overall accuracy and does not take into account
the smaller number of examples in the minority class when
data sets are unbalanced. In this scenario, Acc can favor the
evolution of solutions biased toward the the majority class
[14], [30], [47]. Biased classifiers have strong classification
accuracy on one class but suffer poor accuracy on the other
class. Using Acc in the fitness function, biased solutions can
have high fitness yet rarely classify a minority class instance.
For example, if a class imbalance problem only has 10% of
all instances belonging to the minority class, a classifier with
no discrimination ability between the two classes can score a
high fitness by classifying all the instances as belonging to the
majority class (e.g., 90% overall accuracy).

In this paper, our experimental results show that GP clas-
sifiers that evolved using the standard fitness function Acc
demonstrate significantly poorer classification ability compared
to a range of improved fitness functions which are more sensi-
tive to the skewed class distributions. Using the six benchmark
classification tasks with unbalanced data in Section III, we
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show that new fitness functions that are sensitive to the smaller
minority class can evolve classifiers with better discrimination
ability between the class examples compared to the standard
Acc. We also show that, on these tasks, this improvement
in classification performance using the new fitness functions
is greater in the tasks with high levels of class imbalance
compared to the tasks with a better balance of class examples.
Refer to Table II for details.

V. CURRENT GP FITNESS FUNCTIONS AND LIMITATIONS

To address the evolution of biased classifiers when data
are unbalanced, there is much work in GP which focuses on
adapting the fitness function to factor in the uneven distribution
of class examples during the training process. In this section,
we present two well-known alternative GP fitness functions for
class imbalance and discuss the limitations of each approach
and why they can be improved. These two fitness functions
include the average classification accuracy of minority and
majority classes [21], [28], [49], and the AUC [18], [28].

A. Average Class Accuracy in Fitness

The function Ave(2) uses a weighted-average classification
accuracy of the minority and majority classes in fitness. In
(2), minority accuracy corresponds to the true positive (TP)
rate, and majority accuracy is the true negative (TN) rate. The
weighting factor is controlled by W , where 0 < W < 1. When
W is 0.5, the accuracy of both classes is considered as equally
important in fitness. When W > 0.5, minority class accuracy
will contribute more in the fitness function than majority class
accuracy by factor W . Similarly, majority class accuracy will
contribute more when W < 0.5

Ave=W ×
(

TP

TP +FN

)
+(1−W ) ×

(
TN

TN+FP

)
. (2)

This weighting factor facilitates two important requirements
in the fitness function. The first is when solutions with good
classification accuracy on both classes must be evolved, and
the second is when solutions with strong accuracy on one class
over the other class must be evolved. However, choosing a good
weighting factor a priori in the fitness function for a particular
classification problem is hard. A suitable configuration can
typically be problem specific and determined using a trial-and-
error process. Many practitioners employ an equal weighting
(i.e., W = 0.5) [23], [28], [57]. In this paper, the effectiveness
of Ave is evaluated in both capacities, i.e., using an equal class
weighting as well as different weighting configurations between
0.2 and 0.8 at intervals of 0.1.

While this fitness function can evolve solutions with a better
balance of classification accuracy in both classes compared to
the standard Acc, a major limitation of both Acc and Ave is that
these measures represent a solution’s classification performance
at a single class threshold only. Varying this class threshold usu-
ally results in a different classification performance on the two
classes. For example, if Fig. 3(a) represents the distributions of
genetic program outputs for a given solution when evaluated
on input instances from the majority and minority classes, then

Fig. 3. Figure on the left shows an example of class distributions of genetic
program outputs for minority and majority class instances, and two class
thresholds (0 and t). The horizontal axis is the genetic program output, and
the height of a point along either distribution is the frequency of class instances
which evaluate the same output. The figure on the right shows an example ROC
curve, where points A and B correspond to the performance of the genetic
program using class thresholds 0 and t.

the classification accuracy of this solution for each class will be
different when the class threshold is zero or t. When the class
threshold is t, instances are labeled as “minority class” if the
classifier output is ≥ t (otherwise, “majority class”). Selecting
a suitable class threshold to represent a classifier’s performance
is nontrivial.

Due to this limitation, fitness function Ave often does not
consistently evolve solutions with improved classification per-
formance compared to the standard Acc. In this paper, we show
that GP classifiers that evolved using Acc and Ave show no
significant difference in performance in exactly half of the six
benchmark classification tasks, particularly when the imbalance
ratio in a classification task is not sufficiently large. Refer to
Table II for details.

B. AUC in Fitness

The AUC is a useful measure of classification performance
that is not dependent on a single class threshold, unlike the
traditional accuracy-based measures (such as Acc and Ave)
[44]. ROC curves were originally used in signal detection
theory to characterize the tradeoff between hit rate and false
alarm rate over a noisy channel [18]. It has since been widely
utilized in the machine learning community to both visualize
and measure the performance of a classifier across varying class
thresholds [45], [58]–[60].

In binary classification, each operating point on an ROC
curve, such as Fig. 3(b), represents the classification accuracy
of the two classes at a single class threshold. In Fig. 3(b), the
vertical axis represents the TP rate (i.e., positive or minority
class accuracy), and the horizontal axis represents the false
positive (FP) rate (i.e., error rate of the negative or majority
class). The ROC curve is generated by varying the class thresh-
old which biases the final classification decision and evaluating
the classifier to obtain the accuracy of the two classes. The
bottom-left point on the ROC curve represents the classifier
performance when all instances are assigned to the negative or
majority class (TP rate or minority accuracy is 0%), whereas the
top-right point represents the performance when all instances
are assigned to the positive or minority class (majority accuracy
is 0%). The top-left point on the ROC plot represents perfect
classification (all examples are assigned with correct class
labels), and the line x = y represents randomly guessing the
class label.
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By taking into account the TP and FP rates at multiple-class
thresholds, the AUC effectively measures the classification
performance of a solution across different class thresholds [44].
The better the ROC curve, the better the classifier’s ability to
discriminate between the two classes at different class thresh-
olds. The AUC approximates this classification ability as a
single-figure measure between zero and one; this can also be
thought of as the probability that an example from the positive
(minority) class is correctly predicted across different class
thresholds [44].

A simple technique to approximate the AUC for a given clas-
sifier computes the sum of the areas of individual trapezoids1

fitted under the ROC points [18]. Using this technique, the
fitness function AucF can be defined using (3). In (3), N is the
number of class thresholds to be used in the ROC curve, where
the greater the number, the better the AUC approximation, and
TPi and FPi are the accuracy of the two classes (i.e., true and
FP rates, respectively) at the class threshold i

AucF =
N−1∑
i=1

1
2
(FPi+1 − FPi)(TPi+1 + TPi). (3)

We use the following technique to generate an ROC curve
for a given genetic program classifier.2 A solution is evaluated
on all input examples, and the corresponding genetic program
outputs are sorted in ascending order. The first class threshold
is initialized as the smallest genetic program output, and the
classifier is evaluated to obtain the TP/FP values. This threshold
is then incremented by some amount T , and the solution is
reevaluated to obtain the new TP/FP values; this process is
repeated until the largest genetic program output is reached. To
calculate the full AUC or AucF , T is incremented as the next
genetic program output that is greater than T ; this means that all
possible class thresholds are used in the computation, allowing
for a highly accurate estimation.

Due to the AUC being threshold independent, it is invariant
to unbalanced class distributions and is widely used in class
imbalance scenarios to evolve solutions with good classification
ability [14], [30], [47]. In this paper, our experimental results
show that the classification ability of GP solutions that evolved
using the fitness function AucF (3) is always superior to the
solutions that evolved using either of the traditional accuracy-
based measures Acc (1) and Ave (2) on the six tasks. Refer to
Table II for details.

However, a major limitation of using AucF in the fitness
function is the increased training times. This is due to the
computational effort required to construct an ROC curve: Each
classifier must be evaluated on all fitness cases at every distinct
class threshold to obtain the corresponding TP/FP values. Our
experimental results show that GP training times using AucF

can take approximately five to eight times longer than the two
other fitness functions on the smaller data sets (fewer than

1The area of a trapezoid is (1/2) · w · (h + h′), where w is the width, and
h and h′ are the heights of the sides of the trapezoid [18].

2The method of varying the class threshold is different, depending on the
learning algorithm. For example, neural networks and NB usually output a
probability that an example belongs to a particular class. In this case, the class
thresholds would vary between values 0 and 1.

1500 training examples), while taking approximately 15 times
longer on the largest data set (more than 10 000 training ex-
amples); see Table II for details. This represents a substantial
increase in training time.

Two alternative techniques to approximate the AUC in the
fitness function include using fewer class thresholds in (3) to
limit the number of evaluations of all fitness cases (i.e., to
reduce training time), and a statistical approximation based on
the well-known WMW statistic [28], [44], [47]. In the first case,
seven distinct class thresholds are recommended for a fast and
accurate approximation to the full AUC in [44]. Therefore, we
define a new fitness function AucE which uses exactly seven
class thresholds spread uniformly over the range of genetic
program outputs for a given solution. Naturally, this faster
approximation will have a lower precision than the full AUC
(AucF ).

For WMW-based estimation, this statistic uses a series of
pairwise comparisons between the genetic program outputs
(when evaluated on examples from the two classes), effectively
measuring the ordering of minority to majority class outputs.
The WMW statistic as a fitness function Wmw is calculated
using (4), where Pi and Pj represent the outputs of a genetic
program when evaluated on an example from the minority
(Min) and majority (Maj) classes, respectively. The indicator
function Iwmw in (4) returns 1 if Pi > Pj and Pi ≥ 0 or 0
if otherwise; this enforces both the zero class threshold and
the required ordering of minority and majority class outputs in
evolved solutions. The denominator ensures that Wmw returns
values between 0 and 1, where 1 indicates optimal AUC and 0
indicates poor AUC

Wmw =

∑
i∈Min

∑
j∈Maj Iwmw(Pi, Pj)

|Min| × |Maj| . (4)

In this paper, we investigate the use of all three techniques to
evaluate the AUC in fitness, i.e., using the full AUC (AucF ),
the fast AUC approximation (AucE), and the WMW-based
approximation (Wmw).

C. Summary of Limitations of Current Fitness Functions

The following summarizes the main advantages and limita-
tions of the two accuracy-based fitness functions Acc and Ave
and the three AUC-based fitness function discussed earlier, and
highlights what aspects of these need improvement.

The measure Ave (2) which uses the average classification
accuracy of the minority and majority classes is sensitive to the
smaller minority class in class imbalance scenarios (unlike the
standard Acc) but does not consistently show very good clas-
sification results on the classification tasks (refer to Table II).
How can this widely used measure be improved to evolve better
performing classifiers when data are unbalanced?

The GP fitness function using the full AUC (AucF ) can
evolve superior-performing classifiers compared to the tradi-
tional measures Acc and Ave in class imbalance scenarios.
However, AucF can also incur substantially longer training
times than the other two fitness functions, due to the compu-
tational cost in evaluating the AUC during fitness evaluation.
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Can new and faster (threshold-independent) evaluation mea-
sures which approximate the AUC in fitness be developed to
evolve solutions with good classification ability, but with faster
training times? How will these, and the two existing techniques
to approximate the AUC in fitness (AucE and Wmw), compare
to the full AUC (AucF ) on these tasks? We try to answer these
questions in the next section.

VI. NEW FITNESS FUNCTIONS FOR CLASSIFICATION

WITH UNBALANCED DATA

We present four new fitness functions for classification with
unbalanced data to address the limitations described in the pre-
vious section. The first two Amse and Incr aim to improve the
traditional measure Ave (2). The second two Corr and Dist
use novel threshold-independent measures aimed at evolving
solutions with good class separability but with faster training
times than the AUC-based functions.

Fitness Function Amse: Equation (5) is based on the mse,
which is a popular machine learning measure for determining
the difference between input and output patterns [20], [57],
[61]. However, (5) uses the average mse for each class, whereas
many other approaches (such as those in [20] and [57]) use
the overall mse for all training examples. This fitness function
is similar to the fitness Ave (2) except that the magnitude or
values of the genetic program outputs are also factored into
the fitness, whereas Ave only considers the TP and TN rates
(magnitude of genetic program outputs ignored). The goal of
this fitness function is to evolve classifiers whose outputs are
closely “calibrated” with the desired or target values for each
class, where solutions with smaller deviations between the
target and classifier outputs are rewarded with better fitness over
solutions with larger differences.

In (5), Pci represents the output of a genetic program clas-
sifier when evaluated on the ith example belonging to class
c, Nc is the number of examples in class c, and K is the
number of classes. The target Tc values for the majority and
minority classes are −0.5 and 0.5, respectively, according to
the zero-class-threshold approach (minority predictions should
be positive, and majority predictions should be negative)

Amse =
1
K

K∑
c=1

(
1 −

∑Nc

i=1 (sig(Pci) − Tc)
2

Nc × 2

)
(5)

where

sig(x) =
2

1 + e−x
− 1.

However, as the output of a genetic program classifier Pci

has no bounds (can be anything between −∞ or +∞), Pci

must be bounded (or scaled) for consistency in fitness values
across the population. If this is not enforced, genetic programs
which produce large output values risk inflating the difference
between target and actual values (i.e., poorer fitness) compared
to other genetic programs with similar accuracy but which
produce smaller output values. For example, if two classifiers
S1 and S2 have the same class accuracy but S1 outputs values
in the range [−100, 100] and S2 in the range [−5, 5], then

the difference between target outputs (Tc) and genetic program
outputs (Pci) will be larger for S1 by virtue of the larger genetic
program outputs only.

For this reason, (5) uses a sigmoid function (sig) to scale
the genetic program outputs (Pci) to the range [−1, 1]. This
sigmoid function is applied to the value returned from the root
node of the genetic program during the fitness evaluation and
serves only to scale the range of genetic program outputs to
−1 and +1 (sign of genetic program output values unaltered).
The scaling ensures that positive output values are “spread out”
between 0 and 1, and not simply “cut off” at 1, and likewise for
negative output values between 0 and −1.

The difference between target and actual classifier outputs
for each class is normalized to values between 0 and 1, where
Nc × 2 in the denominator in (5) is the absolute difference
between the smallest (−1) and largest (+1) genetic program
output values (according to the sigmoid function). This is then
inverted (1—error) in order to make the fitness values returned
from this function consistent with the other fitness functions
(0-worst and 1-best).

Fitness Function Incr: Equation (6) extends the function
Ave by assigning incremental rewards to solutions whose class
predictions fall further away from the class boundary. Incr im-
proves the traditional Ave by differentiating between solutions
which have the same class accuracy, but which use different
internal classification models. By counting the average number
of incremental rewards earned per class, Incr favors solutions
with better classification models (i.e., classifier predictions that
fall further away from the class boundary).

In (6), Pci represents the output of a genetic program clas-
sifier when evaluated on the ith example belonging to class c,
Nc is the number of examples in class c, and K is the number
of classes. The term Dcj represents the jth element of the set
of distinct genetic program outputs for all examples in class c
(i.e., distinct Pci values for class c), and Mc is the number of
distinct genetic program outputs for all examples in class c. The
denominator in (6) corresponds to the maximum reward that a
solution can obtain for each class; this serves to normalize the
rewards earned in each class to values between 0 and 1. As a
result, fitness values for Incr range between 0 (worst fitness)
and 1 (best fitness)

Incr=
1
K

K∑
c=1



∑Mc

j=1

[
Izt(j,Dcj , c).

∑Nc

i=1 Eq(Dcj , Pci)
]

1
2Nc(Nc + 1)




(6)

where

Izt(r, k, c) =

{
r, if k ≥ 0 and c ∈ Min

or if k < 0 and c ∈ Maj
0, otherwise

Eq(p, q) =
{

1, if p = q
0, otherwise.

Equation (6) uses two main components to calculate the
incremental rewards for each class; these correspond to the two
indicator functions Izt and Eq. The first component Izt returns
its first argument if the given prediction is correct with respect
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Fig. 4. Genetic program outputs for two classifiers; X denotes the classifier’s
outputs for different (minority class) examples, where equivalent X values are
stacked above each other. The solid circle shows correct class predictions, and
the dotted circle shows incorrect predictions. Classifier (b) earns more rewards
than (a), as (b) has more predictions that lie further away from the (zero) class
threshold; these earn the highest reward per prediction.

to the zero class threshold or 0 if otherwise. In this case, j
is returned for correct predictions, where j is the incremental
reward earned for the given prediction. As the genetic program
outputs are processed in ascending order, the reward earned
will increase as predictions lie further and further away from
the class threshold. The second component Eq returns 1 if two
genetic program outputs are the same or 0 if otherwise; this
counts the number of different genetic program outputs that
evaluate the given value.

Fig. 4 shows an example of how the incremental reward
for a particular class is calculated using two different genetic
program classifiers. In Fig. 4, X denotes the genetic program
outputs (at some value along the horizontal axis) when evalu-
ated on seven minority class instances. Notice that these seven
genetic program outputs only correspond to four distinct values
(equivalent X values are stacked above each other in Fig. 4).
Each distinct genetic program output is circled (solid and dotted
circles); these circles are referred to as clusters in Fig. 4.
According to the zero class threshold, both solutions (a) and
(b) in Fig. 4 have three clusters that correspond to “correct”
predictions (solid circles) and one incorrect prediction (dotted
circle). As there are exactly three “correct” clusters of genetic
program outputs, the incremental rewards are as follows: one
point for each prediction in the first cluster (nearest to the class
threshold), two points for each prediction in the second cluster,
and three points for each prediction in the third cluster.

Using these incremental rewards, solution (a) accumulates a
total of ten points: three points in the first cluster (one point
for each prediction), four points in the second cluster (two
points for each prediction), and three points in the third cluster
(three points for the single prediction). Similarly, solution (b)
accumulates a total of 14: one point in the first cluster, four
points in the second cluster, and nine points in the third cluster.
Solution (b) is therefore rewarded with a higher fitness than
solution a (for this particular class), as b has more predictions
that are further away from the class boundary than a. Using the
fitness function Ave, these two solutions will have equal fitness
on this class as both correctly labeled a total of six examples.

Fitness Function Corr: Equation (7) is a novel fitness func-
tion based on the well-known statistical measure, the cor-
relation ratio, which measures linear dispersal between two
populations of data [62]. The correlation ratio can be used for
classification if we consider the genetic program outputs, when

evaluated on the examples from the two classes, as the two
populations of data and how these are separated with respect
to each other. The higher the dispersal between these two
populations, the better the separability of the genetic program
outputs for the two classes. The correlation ratio outputs values
between 0 (poor separability) and 1 (good separability)

Corr =
1
K

(r + Izt(1, µmin, µmaj)) (7)

where

r =

√ ∑K
c=1 Nc(µc − µ̄)2∑K

c=1

∑Nc

i=1(Pci − µ̄)2

µc =
∑Nc

i=1 Pci

Nc
µ̄ =

∑K
c=1 Ncµc∑K

c=1 Nc

.

In (7), r computes the correlation ratio, where Pci is the
output of the classifier when evaluated on the ith example
belonging to class c, Nc is the number of examples in class
c, and K is the number of classes; µc represents the mean of
classifier outputs for class c only, and µ̄ represents the mean of
µc for both minority and majority classes. As r only measures
the separability of output values, indicator function Izt [from
(6)] enforces the zero class threshold. In this case, Izt returns
1 if majority and minority class predictions are negative and
nonnegative, respectively, and 0 if otherwise.

Fitness Function Dist: Equation (8) treats the genetic pro-
gram outputs from the examples from the two classes as two
independent distributions and measures the distance between
these class distributions as the level of class separability. Dist
was originally developed for multiple-class problems with rel-
atively balanced class distributions [54] and has not previously
been evaluated on binary class imbalance tasks. Equation (8)
computes the point equidistant from the means of two distri-
butions, measured in terms of standard deviations away from
the mean (where the standard deviations can be different for
the two distributions). In the worst case, where the means and
standard deviations of both class distributions are the same
(poor separability), this distance will be zero. In the ideal case,
where there is no overlap between the two class distributions
(high separability), this distance will be large (go to +∞).

In (8), µc and σc correspond to the mean and standard
deviation of the class distribution c, respectively, where c is
either the minority (min) or majority (maj) class. Similarly,
Pci is the output of the classifier when evaluated on the ith
example belonging to class c, and Nc is the number of examples
in class c. Dist also uses the indicator function Izt to enforce
the zero class threshold; here, the distance value for a solution
is doubled if Izt returns 1

Dist =
|µmin − µmaj|
σmin + σmaj

× Izt(2, µmin, µmaj) (8)

where

µc =
∑Nc

i=1 Pci

Nc
σc =

√√√√ 1
Nc

Nc∑
i=1

(Pci − µc)2.
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TABLE II
AVERAGE (± STANDARD DEVIATION) OF THE AUC, BEST AUC, AND TRAINING TIMES OVER 50 RUNS FOR GP FITNESS FUNCTIONS ON THE

SIX TASKS. THE GROUP RANK OF FITNESS FUNCTIONS WITH STATISTICALLY SIMILAR AUC IS SHOWN IN “g.r” (1 IS THE BEST), WHILE

“s.b.t” SHOWS WHICH GROUPS ARE STATISTICALLY WORSE. THE CLASS IMBALANCE RATIO IS SHOWN IN PARENTHESES

Fig. 5. Average AUC (training set) of the fittest evolved solution in the
population using the GP fitness functions over 50 independent runs (Ped task).

VII. GP EXPERIMENT RESULTS

In this section, we discuss the training and test performances
of our GP approaches, and a comparison with NB and SVMs,
for the six unbalanced data sets.

A. Training Performance of GP Fitness Functions

Fig. 5 shows the effectiveness of the GP fitness functions
during the training process for the Ped task only. As GP is
a stochastic learning algorithm, each experiment is repeated
50 times using a different random seed in each run. Therefore,
this figure reports the average AUC (on the training set) of
the fittest solution in the population over the 50 independent

runs. This figure shows the smooth increase in fitness over
50 generations for each of the fitness functions, suggesting that
training is not an issue for this task. Fig. 5 also shows that the
performances on the training set and the test set (discussed in
the next section) are very consistent for this task, suggesting
that no serious overfitting has occurred in the experiments.
These conclusions are very similar for all six tasks; for this
reason, the corresponding figures for the remaining tasks are
omitted for space constraints. There is also a pattern in the AUC
performances for the different methods in this figure. The three
AUC-based functions (AucF , AucE , and Wmw) show the best
performance, as expected, followed by the four new fitness
functions Dist, Amse, Corr, and Incr and the traditional
measure Ave. The worst performance is from the standard GP
fitness function Acc.

B. AUC of GP Fitness Functions on Test Set

Table II shows the experimental results on the test set for
the different GP fitness functions, for the six unbalanced data
sets. This table reports the average and standard deviation of
the AUC (on the test set) and the training times, the highest
AUC from an evolved solution, and the outcome from the
statistical significance tests, using the different GP fitness func-
tions over 50 runs. Training times are reported in seconds or
minutes. The AUC is used as the primary measure of classifica-
tion performance as this metric is not dependent on a single
class threshold (as previously discussed) and is insensitive
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to skewed class distributions unlike the overall classification
accuracy.

An ANOVA F -test [63] of the AUC from the different GP
fitness functions is used to statistically test the null hypothesis,
i.e., no difference between the fitness functions over 50 runs
(5% level of significance). The p-values from the F -test (shown
as p in Table II) are extremely low for each task. This indicates
that there is a statistically significant difference in AUC using
the different GP fitness functions over the 50 independent runs
for each task, i.e., null hypothesis rejected, as the smaller the
p-values, the greater the statistical difference.

Therefore, a post hoc multiple-comparison test using Tukey’s
honestly significant difference (HSD) [64] is used to determine
the statistically significant differences between group means.
Tukey’s HSD test conducts a series of pairwise comparisons3

using the mean AUC from the different GP fitness functions and
outputs a set of 95% confidence intervals for each comparison
based on the studentized range distribution (similar to a student
t-test) [64]. Note that a Shapiro–Wilk test [63] verified that our
experiment data are normally distributed (required for Tukey’s
HSD test4).

We summarized the outcome of Tukey’s multiple-
comparison test on the different GP fitness functions and
highlighted those fitness functions which produce AUC results
that are significantly better than other fitness functions in the
“Signif. Test” column in Table II for each task. Here, “g.r”
denotes the group rank of fitness functions with statistically
similar AUC for a particular task (1 is best), and “s.b.t” is the
set of other groups that are statistically worse.

The empty set denotes that a particular fitness function was
not statistically better than any other group.

For example, Table II shows that, for the Ion task, fitness
function Corr has a group rank of 1 and is statistically better
than groups with ranks 3 and 4. This means that Corr shows
the best average AUC (0.87) for this task (along with Dist),
and this is statistically better than those fitness functions in
groups 3 (Acc) and 4 (Ave and Incr). As Corr and Dist both
have group ranks of 1, they are statistically no different from
one another in this task. However, both are ranked better than
group 2 (Amse, AucF , AucE , and Wmw) as group 2 is only
significantly better than group 4.

The different GP fitness functions are also ranked in terms of
which scored the most number of top-three AUC performances
with respect to all other fitness functions, on a run-by-run
basis for each task. These results are shown in Table III. The
top-three AUC performances for a single run (for a particular
task) are those fitness functions which scored the highest, the
second highest, and the third highest AUC in that particular
run only. The first-, second-, and third-place rankings achieved
for each fitness function are summed over all the 50 inde-
pendent runs, for all six tasks. For example, the first line in
Table III shows that, out of a total of 300 GP experiments (i.e.,
50 runs × 6 tasks), AucF scored the most number of top-three

3There are (k(k − 1)/2) total comparisons, where k is the number of
different GP fitness functions.

4The Kruskal–Wallis test [63] is a nonparametric multiple-comparison test
which can be used for the same purposes when this assumption does not hold.

TABLE III
FIRST-, SECOND-, AND THIRD-PLACE AUC RANKINGS (ON A

RUN-BY-RUN BASIS) FOR THE GP FITNESS FUNCTIONS ACROSS

ALL TASKS AND THE SUM OF TOP-THREE RANKS. THE HIGHEST

POSSIBLE RANK IS 300 (RANKED IN THE SAME POSITION

FOR EACH OF THE 50 RUNS, FOR ALL SIX TASKS)

ranks (178). This fitness function evolved solutions with the
highest AUC with respect to all other fitness functions 58 times,
the second highest AUC 65 times, and the third highest AUC
54 times.

Table III shows a similar pattern of AUC behavior on the
test set (compared with the training performance discussed in
the previous section) for the different GP fitness functions. As
expected, the three AUC-based functions (AucF , Wmw, and
AucE) usually evolved solutions with the highest AUC on the
tasks, showing the largest number of top-three rankings from
all other fitness functions (178, 176, and 135, respectively).
Following closely are the four new fitness functions Dist,
Amse, Corr, and Incr. This suggests that these are useful new
measures for evolving solutions with good AUC on the tasks
compared to the two traditional measures Acc and Ave which
are at the bottom of Table III.

1) AUC-Based Fitness Functions: Not surprisingly, AucF

and Wmw are the two highest ranking fitness functions,
producing the most number of top-three ranks according to
Table III. Table II shows that these two fitness functions also
incur the longest training times on the tasks, as expected.
However, notice that the training times using AucE are sub-
stantially faster than both AucF and Wmw in all tasks. This
difference is significant in the largest task, Ped (more than
10 000 training examples): AucE taking approximately 5 min
on average compared to 71 and 49 min for AucF and Wmw,
respectively. This suggests that, while Wmw gives a very
close approximation to the full AUC in the fitness function, no
substantial gain can be made in terms of reducing training time,
whereas AucE offers a significant reduction in training time
while still evolving solutions with high AUC.

2) New Fitness Functions: Table II shows that the AUC
using Dist, Amse, and Corr is as good as AucE in nearly
all of the six tasks. Each is significantly better than AucE in
exactly one task (Yst2) and statistically no different to AucE in
exactly four tasks. Table II also shows that the training times
using these three fitness functions are faster than AucE in all
tasks. This is most apparent using Dist, where the average
training time is approximately twice as fast as AucE in all
tasks. This suggests that these new fitness functions are fast and
effective measures of classifier separability, comparable to the
fastest of the AUC-based measures AucE . Of particular interest
is Dist, which scored the largest number of top-three ranks
from all of the new fitness functions (104 according to Table III)
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TABLE IV
AVERAGE (± STANDARD DEVIATION) AUC OVER 50 RUNS FOR GP FITNESS FUNCTION Ave (2) USING DIFFERENT CONFIGURATIONS ON THE

SIX TASKS. THE GROUP RANK OF CONFIGURATIONS WITH STATISTICALLY SIMILAR AUC IS SHOWN IN “g.r” (1 IS THE BEST), WHILE

“s.b.t” SHOWS WHICH GROUPS ARE STATISTICALLY WORSE. CLASS IMBALANCE RATIO IS SHOWN IN PARENTHESES

while consistently showing the quickest training times from all
fitness functions on the tasks.

Interestingly, Table II shows that the AUC using Amse (5)
is significantly better than the traditional measure Ave (2) in
all tasks except Ped (where AUC is similar). This is interesting
as both Amse and Ave are relatively similar classification mea-
sures; the only difference is that Amse utilizes the magnitude of
the genetic program output in fitness to “calibrate” a classifier’s
output to target values for each class, whereas Ave uses only
the TP and TN rates in fitness (magnitude ignored).

Notice also that the AUCs of Dist, Amse, and Corr are
statistically no different to one another in all tasks. How-
ever, Amse outperforms the traditional Ave more often than
Dist and Corr: Amse is significantly better than Ave in all
tasks (except Ped), whereas Dist and Corr are significantly
better than Ave in only two tasks each. This suggests that
good threshold-based measures in the fitness function such as
Amse can be more effective in evolving high-AUC solutions
compared to measures such as Dist and Corr, but further
investigation is needed.

Although Table III ranks Incr below Dist, Amse, and
Corr, this fitness function achieves very good performance
on the two tasks with the smallest number of minority class
examples, Spt and Bal; these tasks only have 24 and 27 training
examples, respectively. Table II shows that Incr has a group
rank of 1 in Spt and 2 in Bal—this is as good as both AucF

and AucE and significantly better than Ave—suggesting that
Incr is a useful new measure, particularly on tasks with very
few minority class examples.

3) Traditional Fitness Functions Acc and Ave: As previ-
ously discussed, Table II shows that the AUC using the standard
Acc (1) is nearly always significantly worse than the AUC-
based functions and new fitness functions, in all tasks. However,
notice that, on average, the AUCs using Ave and Acc are statis-
tically no different to one another in exactly half the tasks (Ion,
Spt, and Yst2). This shows that using the average classification
accuracy of the minority and majority classes in fitness does
not always evolve solutions with good discrimination ability
between the two classes compared to the standard Acc in class

imbalance scenarios. However, our new measures successfully
improved performance compared to both these fitness functions
on the tasks.

C. Analysis of Weighted-Average Fitness Function

This section explores whether different configurations in
the GP fitness function Ave (2), which favor either majority
or minority class accuracy, can improve the AUC of evolved
solutions compared to an equal class weighting. Recall that, in
Ave, W controls the contribution of minority class accuracy
to majority class accuracy in the final fitness value, where
0 < W < 1; an equal class weighting is specified by W = 0.5.

Table IV shows the experimental results using the seven
different weighting configurations for the six tasks. Similar to
the previous GP experimental results (Table II), an ANOVA
F -test is used to statistically test the null hypothesis (i.e., no
difference using the different W values), and Tukey’s multiple-
comparison test is used to find the statistically different group
means (with respect to average AUC). Table IV shows that the
W values are statistically different to one another (i.e., null
hypothesis rejected) for all tasks except Yst2 (p-value of 0.49).

According to Table IV, no nonequal weighting configuration
in Ave (W �= 0.5) significantly improved AUC compared to
an equal weighting (W = 0.5) on the tasks. In other words,
no configuration of W , where W �= 0.5, shows a significantly
better AUC compared to equal weighting. Interestingly, con-
figurations favoring majority accuracy over minority accuracy
(0.3 < W ≤ 0.5) produce better AUC compared to the oppo-
site case, where minority accuracy is favored. However, this
small improvement is statistically significant in only two tasks
(Ion and Spt).

As a guideline, an equal class weighting or configuration
slightly favoring majority accuracy gives the best results. The
more “extreme” the weighting configuration, the poorer the
AUC (with the exception of W = 0.8 for Bal, which shows
high AUC). This is not surprising since extreme weighting
configurations favor the evolution of classifiers strongly biased
toward one class only.
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TABLE V
AUC AND TRAINING TIME FOR A SINGLE RUN USING NB AND SVM ON THE TASKS

D. NB and SVMs

We compare the classification results of our GP approaches
with two other popular machine learning approaches, namely,
NB and SVM. Table V shows the AUC and training time using
NB and SVM on the tasks. The SVM uses a sequential minimal
optimization algorithm with a radial-basis-function kernel and
Gamma value5 of ten.

Table II shows that the best classifiers evolved by GP (over
50 experiments) using the different fitness functions are as good
as, or in most case better than, NB and SVM for these tasks.
This suggests that these new GP fitness functions, which are
designed to measure the level of overlap between two class
distributions without bias toward either class, can evolve highly
accurate classifiers on the tasks.

Comparing the average AUC using the most effective GP
configuration AucF (this fitness function is the best ranked in
Table III and consistently achieves high average AUC results
on the tasks in Table II), GP significantly outperforms both NB
and SVM on the task with the lowest proportion of minority
class examples, Bal (8% of all examples). On this task, both
NB and SVM show equally poor AUC performances, indicating
that these methods are biased toward the majority class. GP and
NB show similar performances on the tasks with minority class
representation between 10%–20% of all examples (Spt, Ped,
Yst1, and Yst2), where both methods are usually better than
SVM. These results suggest that the ability to choose/develop
an effective fitness function to evolve accurate classifiers gives
GP an advantage over NB and SVM, particularly when data sets
are highly unbalanced.

However, GP shows a slightly lower average AUC than a
single run of SVM and NB on the Ion task. This is more
related to the complexity of this problem rather than to the
relatively low level of class imbalance. Ion has 34 features, the
largest of the tasks. This represents a very large search space of
classifiers for GP, given that we currently restrict the maximum
program depth of GP classifiers to eight (for consistency in
the experiments). Increasing this maximum GP program depth
parameter (e.g., to 10 or 12) would improve the average GP
performances on this task by allowing GP to more effectively
explore this search space. Similarly, increasing the maximum
number of generations to 75 or 100 (this is currently set as 50
also for consistency) can also allow GP more time to spend on
searching. As this is not the primary goal of this paper, we will
further consider this aspect as future work.

Table V also shows that a single run of SVM, and particularly
NB, is faster than the average GP training times on these tasks.
However, this is not really a serious concern as GP only takes a
few seconds on most of these tasks. The exception is Ped, which

5Gamma = 10 generally gave the best classification results from experi-
ments using 0.1, 1, 10, and 100.

is the largest data set (more than 24 000 examples); here, most
of the GP methods and SVM take a few minutes.

VIII. DISCUSSIONS

This section discusses several important related aspects.

A. Validation Tests

We have tested these fitness functions on six benchmark
problems with different data and variations. They contain cer-
tain levels of noise. The validation sets used in this paper
correspond to the unseen test sets, i.e., 50% of the original
data set, for each task. The performances reported are on the
unseen test tests (validation sets) in addition to the training set.
A separate validation set or the cross-validation method is not
used as it is not necessary: The performances on the training and
test sets are very consistent, and no serious overfitting occurred
in the experiments.

B. Fitness Functions for Multiple-Class Problems

These fitness functions can be used directly for multiple-class
problems, provided that a suitable multiple-class classification
strategy is also used in GP to effectively translate the single
program output value into a set of class labels [5], [6]. Alterna-
tively, a two-class-problem decomposition-based approach can
also be used. For example, [60] uses a one-versus-rest split
to calculate the AUC for each class, where the final AUC is
averaged across all classes. A direct comparison between these
approaches is beyond the scope of this work.

C. Adaptability of Cost Functions for Other Paradigms

These fitness functions can also be used to train other ma-
chine learning approaches which may be more suitable for
some problems. For example, [37] uses an evaluation criterion
similar to Ave, i.e., the geometric mean of the accuracy of
the two classes, to train a multilayer-perceptron network for a
particular class imbalance task. However, the GP training times
are not a serious concern as the actual time for each GP run
is only several seconds in most tasks. As the focus of this
paper is to develop new techniques within a GP framework,
whether these cost functions can be more efficient in training
other machine learning tools/methods such neural networks is
beyond the scope of this work.

D. Problem Sets

The benchmark data sets used in these experiments are
carefully selected to encompass a varied collection of problem
domains to ensure that our evaluation of the different fitness



BHOWAN et al.: DEVELOPING FITNESS FUNCTIONS IN GP FOR CLASSIFICATION WITH DATA 419

functions is not problem specific. These problems have varying
levels of class imbalance (minority class representation ranges
between 7% and 35% of total examples) and complexity, where
some tasks are easily separable (e.g., Yst2) compared to others.
The training/test instances in the different sets also range from
being well represented such as Ped (each set has approximately
12 000 instances) to sparsely represented such as Spt (each set
has 134 instances, of which only 27 belong to the minority
class). We also ensure that these tasks range between high-
dimensionality (Ion has the most features at 34) and low-
dimensionality (Bal has the least features at 4) problems, and
we use binary and real-valued feature types. However, we will
evaluate these GP methods on more class imbalance problems
as future work.

E. Performance Measures

The AUC is a common approach to measure classification
ability across multiple TP and FP rates in class imbalance
scenarios. Our conclusions about the effectiveness of these fit-
ness functions (such as the rankings discussed in Table III) are
relative to the AUC. However, a variety of other performance
measures can also be used to evaluate and compare the different
GP fitness functions (and SVM and NB); [20] and [48] define
and categorize several metrics for classification (including the
AUC). The use of another good inclusive measure for evaluat-
ing classifier performance can depend on the problem domain
and/or the end goal of the research; this is an open issue in
machine learning.

F. Initial Results Using Bagging Techniques

As bagging with balanced bootstrap samples, i.e., balanced
subsets of class examples, is a common approach in class
imbalance [13], [33], [42], we compared our results to a bag-
ging approach on these tasks. The training set is sampled with
replacement to generate N balanced bootstrap samples, where
the outputs of the N base classifiers are combined using voting.
Initial results using 5 ≤ N ≤ 50 show that bagging with SVM
(as the base classifiers) can improve AUC on the test sets but
that this performance is not better than the GP methods on
the tasks with high level of class imbalance (such as Bal, Yst,
and Ped). Bagging with NB shows no improvement on the
tasks except for Bal, where the best AUC reached (0.61 using
N = 50) is still considerably poorer than both GP and SVM
with bagging. These results are omitted for space constraints
(and in fact, a detailed comparison with bagging is also beyond
the scope of this paper).

IX. CONCLUSION

The goals of this paper are to highlight the limitations of both
the standard GP fitness function and two current approaches
for binary classification with unbalanced data and to develop
new GP fitness functions to address these limitations. The
proposed GP methods utilize the unbalanced data “as is” in
the learning phase, requiring no prior knowledge about the
problem domain, to evolve classifiers with good classification

ability on both minority and majority classes. These goals were
achieved by developing new measures for class separability
and by examining the experimental results of the different GP
approaches across six real-world class imbalance problems.

The classifiers that evolved using the standard GP fitness
(Acc) performed poorly on the tasks compared to the improved
fitness functions. Not surprisingly, the AUC-based fitness func-
tions usually evolved solutions with the best AUC on the tasks
but also incurred the longest training times. The WMW statistic
to approximate the AUC in the fitness function (Wmw) showed
similar performances to the full AUC (AucF ), including very
long training times, whereas the reduced-precision AUC esti-
mation (AucE) offered a significant reduction in training time
while still evolving high-AUC solutions.

A new fitness function measuring the distance between class
distributions (Dist) evolved solutions that performed as well as
the AUC-based measure AucE but with training times twice as
fast. Two new fitness functions based on the mse for each class
(Amse) and the correlation ratio (Corr) also show similar
performance to AucE with slightly better training times. Of
these, Amse was significantly better than the traditional Ave
in nearly all tasks. A new fitness function, which incrementally
rewards correct predictions further away from the class bound-
ary (Incr), outperformed the traditional Ave in tasks with very
few minority class examples.

Varying the misclassification costs for the minority and
majority classes using a weighted average of these accuracies
in the fitness function did not significantly improve AUC
compared to an equal weighting. However, weighting config-
urations favoring majority accuracy over minority accuracy
showed slightly better results than the opposite case. Our GP
methods can also outperform NB or SVMs on tasks with high
levels of class imbalance.

For future work, we will develop further improvements to the
fitness functions, evaluate our GP methods on class imbalance
problems, compare these results to cross-validation techniques
in training, and compare our work to other approaches for
class imbalance such as bagging algorithms and multiobjec-
tive GP.
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